
A Division of Macmillan USA
201 West 103rd St., Indianapolis, Indiana, 46290

Robert Dunlop
with Dale Shepherd,
Mark Martin, et al

DirectX 7
in24Hours

Teach Yourself

00 1634xFM 11/13/99 10:50 AM Page i

Sams Teach Yourself DirectX 7 in 24
Hours
Copyright 2000 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-31634-x

Library of Congress Catalog Card Number: 98-83220

Printed in the United States of America

First Printing: December, 1999

01 00 99 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

DirectX is a registered trademark of Microsoft Corporation.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or
programs accompanying it.

ASSOCIATE PUBLISHER

Bradley Jones

ACQUISITIONS EDITOR

Chris Webb

DEVELOPMENT EDITOR

Matt Purcell

MANAGING EDITOR

Lisa Wilson

PROJECT EDITOR

Tonya Simpson

COPY EDITOR

Rhonda Tinch-Mize

INDEXER

Eric Schroeder

PROOFREADER

Jill Mazurczyk

TECHNICAL EDITOR

Dale Shepherd

TEAM COORDINATOR

Meggo Barthlow

MEDIA DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

COPY WRITER

Eric Borgert

PRODUCTION

Brad Lenser

00 1634xFM 11/13/99 10:50 AM Page ii

Contents at a Glance
Introduction 1

PART I Introduction to DirectX 3
1 About DirectX—The Pieces That Make It Happen 5

PART II Getting Started with DirectDraw 15
2 Our First Step—DirectDraw in a Windows Application 17

3 Moving On—Grabbing Control of the System 39

4 Creating the Game Loop 55

5 Make It Move—DirectDraw Animation Techniques 75

PART III Adding Music and Sound 95
6 DirectSound—Adding Ambience and Sound Effects to Your Game 97

7 Applying DirectSound 113

PART IV Welcome to 3D 133
8 DirectMusic—Interactive Music 135

9 Applying DirectMusic 153

10 Introduction to 3D Concepts 181

11 Rendering the 3D Scene 197

PART V Input Devices 209
12 Creating Our First Direct3D Application 211

13 Adding Textures and Z-Buffers to the Scene 247

14 Adding Realism Through Lighting 265

PART VI Direct3D Immediate Mode 283
15 Importing 3D Objects and Animations Into the Scene 285

16 Modeling a Complex World—Applying Physics and Object
Hierarchies 309

17 Introducing DirectInput—Getting User Input 333

18 Getting Through to the User—Force Feedback 355

19 3D Sound—From Panning to Doppler Effects 375

00 1634xFM 11/13/99 10:50 AM Page iii

PART VII DirectPlay 399
20 Putting Your Game on the Net—Writing Multiplayer Titles 401

21 Game Central—Creating Lobbies 427

PART VIII The DirectMedia SDK 447
22 Adding Video with DirectShow 449

23 Bring Surfaces to Life with DirectX Transform 465

24 Integrating Media Into Web Pages and Applications with
DirectAnimation 487

PART IX Appendixes 511
A Answers 513

B Prepare Your Application for Distribution with DirectSetup 535

Index 541

00 1634xFM 11/13/99 10:50 AM Page iv

Contents
Introduction 1

PART I Introduction to DirectX 3

HOUR 1 About DirectX—The Pieces That Make It Happen 5

What Is DirectX? ..5
DirectX Components ..6

The DirectX SDK ..6
The DirectX Media SDK..7

Preparing to Use DirectX ..7
Preparing the Compiler ..8
Including the SDK in Your Projects ..9

A Brief Introduction to COM ..9
Reusable Interfaces and Backward Compatibility ..10
The IUnknown Base Class ..11
Querying for Interfaces ..11
Reference Counting in COM..12

Summary ..13
Q&A ..13
Workshop ..14

Quiz ..14
Exercises ..14

PART II Getting Started with DirectDraw 15

HOUR 2 Our First Step—DirectDraw in a Windows Application 17

Taking a Look at the Video System ..18
The Components of DirectDraw..18

The IDirectDraw7 Interface ..19
DirectDraw Surfaces ..21
Keeping Inside the Lines with the DirectDraw Clipper22

Drawing on a Surface ..23
A Function to Load Bitmaps to a DirectDraw Surface....................................23

Your First DirectDraw Application..26
Setting Up the Project ..27
Creating a Windows Framework ..28
Initializing DirectDraw and Creating a Clipper ..31
Creating the Primary Surface ..33
Loading the Image..34

00 1634xFM 11/13/99 10:50 AM Page v

Blitting an Image to the Screen..34
Tying It All Together in the Message Loop ..35
Deallocating the Interfaces ..36

Summary ..37
Q&A ..38
Workshop ..38

Quiz ..38
Exercises ..38

HOUR 3 Moving On—Grabbing Control of the System 39

Full-Screen Graphics ..40
Getting the System’s Cooperation..40
Changing the Screen Resolution ..41

Page Flipping ..42
Creating the Flipping Chain ..43
Using Page Flipping ..44

Slide Show—A Simple Surface-Flipping Application..45
Setting Up the Application ..46

Initializing the Application ..47
Cleaning Up..49
Drawing a Slide ..49
Handling Slide Navigation ..51
Sample Output ..52

Summary ..53
Q&A ..53
Workshop ..54

Quiz ..54
Exercises ..54

HOUR 4 Creating the Game Loop 55

Conceptual Overview of the Game Loop ..55
Writing a Better Message Loop ..57
Achieving Smooth Playback..58

Using Timers in the Loop ..59
Selecting the Timer ..59

Your First Piece of Animation: A Scrolling Background......................................61
Setting Up the Application ..61
Setting Up Initialization ..62
Controlling Motion Through Keyboard Input..64
Cleanup on Exit ..65
Creating Your Game Loop..66
Rendering a Scrolling Background ..69

vi Sams Teach Yourself DirectX 7 in 24 Hours

00 1634xFM 11/13/99 10:50 AM Page vi

Summary ..72
Q&A ..73
Workshop ..73

Quiz ..73
Exercises ..73

HOUR 5 Make It Move—DirectDraw Animation Techniques 75

Transparent Blits ..75
The Two Flavors of Color Key ..76
Choosing a Key Color ..77
Converting the Key Color ..77
Setting the Color Key in DirectDraw ..79

Making It Look Like 3D..81
Z-Ordering ..81
Parallax—Depth Perception of Moving Objects..82

Putting It All Together ..83
Loading the Layers ..85

Summary ..92
Q&A ..92
Workshop ..93

Quiz ..93
Exercises ..93

PART III Adding Music and Sound 95

HOUR 6 DirectSound—Adding Ambience and Sound Effects to Your Game 97

DirectSound Basics..98
Low-Latency Audio Mixing ..99
Hardware Acceleration ..99
3D Audio ..100
DirectSound and Windows Waves..100

Inside DirectSound ..100
The DirectSound Object ..101
The DirectSoundBuffer Object ..104
Static and Streaming Sound Buffers ..109

Summary ..110
Q&A ..110
Workshop ..111

Quiz ..111
Exercises ..111

Contents vii

00 1634xFM 11/13/99 10:50 AM Page vii

HOUR 7 Applying DirectSound 113

DirectSound and Games ..114
Working with Waves ..115

A High-Level Use for Waves ..115
Creating the CWave Class ..117
Using the CWave Class ..123

Playing Sound Effects with DirectSound ..124
Summary ..131
Q&A ..131
Workshop ..131

Quiz ..131
Exercises ..132

PART IV Welcome to 3D 133

HOUR 8 DirectMusic—Interactive Music 135

The Features of DirectMusic ..136
The Microsoft Synthesizer ..137
The Age of Interactive Music ..139
Dynamic Creation of Music ..139

Composition of Music in the Digital Realm ..141
A Quick Primer on Musical Structure..142
Storing Compositions with the MIDI Format ..143
Multitrack Music Synthesis..144

DirectMusic Architecture ..144
The IDirectMusicPerformance Interface ..144
Interfaces Used with the Performance Object..146
Putting Together the Band..147
Musical Templates..147

Summary ..149
Q&A ..150
Workshop ..150

Quiz ..150
Exercises ..151

HOUR 9 Applying DirectMusic 153

Using the DirectMusic Producer to Create a Simple Score154
Selecting the Instruments ..154
Creating a Rhythm..156
Making a Simple Melody ..159
Creating Musical Templates ..159
Saving the Performance..162

viii Sams Teach Yourself DirectX 7 in 24 Hours

00 1634xFM 11/13/99 10:50 AM Page viii

Setting Up DirectMusic ..162
Initializing the Performance Interface..162
Loading Composition Files ..164
Establishing the Instruments ..166

DirectMusic Playback..168
Playing Segments ..169
Real-Time Changes to Tempo and Structure ..169

Adding DirectMusic to Our Game ..171
Creating the Interfaces..172
Loading the Performance Components ..173
Changing the Music to Reflect the Scene ..175

Summary ..177
Q&A ..177
Workshop ..179

Quiz ..179
Exercises ..180

HOUR 10 Introduction to 3D Concepts 181

An Overview of the 3D Process ..182
Object Definitions ..182
The 3D Pipeline..182

Defining Locations in 3D Space..184
The New Origami—Building Objects in 3D ..185

Relative Coordinates—Origins and Vectors ..186
Matrixes—Making the World Go Round ..187

The World Transform ..189
The View Transform ..194

Summary ..195
Q&A ..195
Workshop ..196

Quiz ..196
Exercises ..196

HOUR 11 Rendering the 3D Scene 197

Hierarchy of Direct3D Immediate Mode ..197
The IDirect3D7 Interface ..198
The IDirect3DDevice7 Interface..198

The Viewing Frustum ..199
Clipping the Frustum to the Field of View ..199
Front and Rear Clipping Planes ..200
The Projection Matrix, Revisited ..200
Defining the Viewport ..202

Contents ix

00 1634xFM 11/13/99 10:50 AM Page ix

Hidden Surface Removal ..203
Back-Face Culling ..204
Z-Buffering ..205
Summary ..207
Q&A ..207
Workshop ..207

Quiz ..207
Exercises ..208

PART V Input Devices 209

HOUR 12 Creating Our First Direct3D Application 211

Creating Objects in Direct3D ..212
Vertices—A Thousand Points of Light ..212

The Three Mesh Formats ..213
Triangle Lists ..213
Triangle Strips ..214
Triangle Fans ..214
Drawing a Mesh ..215

Indexing a Mesh ..216
Drawing an Indexed Primitive..216

Setting Out on Your First Direct3D Adventure ..217
Creating a Simple 3D Object ..218
Rendering the Object..223
Getting Down to Business..224
Global Interface Pointers..225
Initializing the Application ..227
Initializing DirectDraw for Use with Direct3D ..228
Initializing Direct3D ..230
Setting Up a Viewport ..231
Object Creation ..232
Putting It in Motion ..233
Rendering the Scene ..236
Handling User Input ..238
The Finishing Touches ..240
Running the Application ..243

Summary ..244
Q&A ..244
Workshop ..245

Quiz ..245
Exercises ..245

x Sams Teach Yourself DirectX 7 in 24 Hours

00 1634xFM 11/13/99 10:50 AM Page x

HOUR 13 Adding Textures and Z-Buffers to the Scene 247

Preparing a Z-Buffered Device..249
Selecting a Z-Buffer ..249
Creating and Attaching the Z-Buffer..251
Enabling and Disabling the Z-Buffer ..253

Adding Textures ..253
Load a Texture ..254
Prepare Geometry ..259
Set Up the Device and Render ..260

Summary ..263
Q&A ..263
Workshop ..264

Quiz ..264
Exercise ..264

HOUR 14 Adding Realism Through Lighting 265

Creating a Light ..265
Types of Light..266

Point Lights ..267
Spotlights ..268
Directional Lights ..269

Adding Lighting to Our Project ..269
Creating the Light ..274
Activating the Lighting Pipeline ..277
Animating Lights in the Scene ..278
Removing the Lights ..280

Summary ..280
Q&A ..281
Workshop ..281

Quiz ..281
Exercises ..282

PART VI Direct3D Immediate Mode 283

HOUR 15 Importing 3D Objects and Animations Into the Scene 285

An Overview of 3D Modeling Packages ..286
The Direct3D X File Format ..286

Vertex Storage ..292
Vertex Colors ..293
Vertex Normals ..294
Texture Maps ..295
Frame Hierarchy ..296
Animation Paths ..297

Contents xi

00 1634xFM 11/13/99 10:50 AM Page xi

Converting 3D Studio Files: The CONV3DS Utility..300
Reading the X File Format ..300
Adding Vehicles to Our Application..301

Reading the Model ..301
Setting Up the Hierarchy..302
Adding the Object to the Scene..304
Cleaning Up..305

Summary ..306
Q&A ..306
Workshop ..306

Quiz ..306
Exercises ..307

HOUR 16 Modeling a Complex World—Applying Physics and Object
Hierarchies 309

Reactions and Effects: Defining Real-World Relationships................................310
Motion Dynamics ..311
Forward Kinematics ..312
Pivot Points and Other Kinematics Features..312
Inverse Kinematics ..314
Object Hierarchies ..314
Using Matrices to Combine Motions ..315

Object Interaction ..318
Collision Detection ..319
Object Reactions ..321

Adding Collision Detection to Our Application..324
Defining Object Bounds ..325
Testing for Collisions ..328
Animating Reaction Vectors ..329

Summary ..330
Q&A ..330
Workshop ..331

Quiz ..331
Exercises ..331

HOUR 17 Introducing DirectInput—Getting User Input 333

DirectInput Basics..334
Inside DirectInput ..335

The DirectInput Object ..336
The DirectInputDevice Object ..338

DirectInput Housekeeping ..339
Starting Up DirectInput ..339
Cleaning Up DirectInput ..340

xii Sams Teach Yourself DirectX 7 in 24 Hours

00 1634xFM 11/13/99 10:50 AM Page xii

Handling Keyboard Input ..341
Handling Mouse Input ..344
Handling Joystick Input ..348
Summary ..353
Q&A ..353
Workshop ..354

Quiz ..354
Exercises ..354

HOUR 18 Getting Through to the User—Force Feedback 355

Understanding Force Feedback ..356
Force Feedback Lingo ..356
Types of Effects ..358

Peeking Inside DirectInput ..359
Putting Force Feedback to Work ..361

Enumerating and Creating Force Feedback Devices363
Enumerating Force Feedback Effects ..365
Creating Force Feedback Effects ..367
Playing Force Feedback Effects ..370
Altering Force Feedback Effects ..371

Force Feedback Effect Recipes ..371
Summary ..373
Q&A ..373
Workshop ..374

Quiz ..374
Exercises ..374

HOUR 19 3D Sound—From Panning to Doppler Effects 375

Introduction to 3D Sound ..376
The Physics of Sound ..376
How We Perceive Sound ..378
The Architecture of DirectSound3D ..380

DirectSound 3D Components ..380
DirectSound 3D Buffers ..380
DirectSound 3D Listener..386

Adding DirectSound 3D to Your Application..391
Creating the Listener ..392
Loading Sounds ..394
Creating the 3D Buffer ..394
Animating Sound Effects ..395
Release Interfaces ..396

Summary ..397
Q&A ..398

Contents xiii

00 1634xFM 11/13/99 10:50 AM Page xiii

Workshop ..398
Quiz ..398
Exercises ..398

PART VII DirectPlay 399

HOUR 20 Putting Your Game on the Net—Writing Multiplayer Titles 401

DirectPlay Architecture..402
Creating a DirectPlay Object ..408
Choosing a Network Connection ..408
Joining a Session..412
Communicating with Players ..415

Players and Groups ..415
DirectPlay Messages ..418

Dealing with Network Latency..419
Deterministic/Non-Deterministic Data ..421
Guaranteed Messaging ..421
Message Management ..422

Summary ..423
Q&A ..424
Workshop ..424

Quiz ..425
Exercises ..425

HOUR 21 Game Central—Creating Lobbies 427

Introduction to DirectPlay Lobbies ..428
Bringing Players Together Under One Roof ..429
The Game Server..431

Making a DirectPlay Application Lobbyable ..431
The IDirectPlayLobby Interface ..432

Lobby Support for the Game Client ..434
Registering the Game as Lobbyable ..435

Users, Groups, and Sessions..437
Providing Chat Services ..439
Creating a Session..441
Launching a DirectPlay Lobby Application ..443

Making the Game Lobbyable ..443
Sending and Receiving Lobby Messages ..444
Cleanup ..445

Summary ..445
Q&A ..445
Workshop ..446

Quiz ..446
Exercises ..446

xiv Sams Teach Yourself DirectX 7 in 24 Hours

00 1634xFM 11/13/99 10:50 AM Page xiv

PART VIII The DirectMedia SDK 447

HOUR 22 Adding Video with DirectShow 449

Introducing DirectShow ..450
Video Playback Capabilities ..450
Internet Streaming Video Applications..451
Graph Filters ..454

Stringing Filters Together ..455
Sample DirectShow Application..456

Initializing DirectShow ..456
Setting Up the Filter ..457
Setting Up the File Stream ..458
Streaming the Movie ..460
Cleanup ..461

Summary ..462
Q&A ..462
Workshop ..463

Quiz ..463
Exercises ..463

HOUR 23 Bring Surfaces to Life with DirectX Transform 465

The Power of DirectX Transform..466
A Versatile DirectDraw Surface: IDXSurface..467

Creating a DXSurface..467
Reading Graphics from Various File Formats..468
Automatic Color Conversion..469

Special Effects: DirectX Transforms ..470
Creating the Transform Factory ..470
Using the Factory to Access Transforms..471
2D Transforms ..472
Procedural Surfaces ..475
3D Transforms ..477

A Sample DirectX Transform Application ..480
Create DXSurface Objects ..480
Load the Images ..481
Create the Transform..482
Animate the Image Transforms ..482
Cleanup ..483

Summary ..484
Q&A ..484
Workshop ..485

Quiz ..485
Exercises ..485

Contents xv

00 1634xFM 11/13/99 10:50 AM Page xv

HOUR 24 Integrating Media Into Web Pages and Applications with
DirectAnimation 487

DirectAnimation—One API, Many Uses ..488
Scratching the Surface—A Look at the Interfaces ..489

DirectAnimation Architecture ..490
The DirectAnimation Model ..491

A Versatile Programming Environment ..492
DirectAnimation Programming in C++ ..493
Using Scripts to Use DirectAnimation on the Web494

Sample DirectAnimation Application in C++ ..494
Initializing DirectAnimation ..495
Loading 2D Images ..500
Creating a 3D Object..501
Adding Some Motion ..502
Creating the Camera and Lighting ..503
Adding Sound ..503
Animating the Scene ..504
Cleanup ..505
Doing it the DirectDraw Way ..505

Sample Web Page Using DirectAnimation..506
Summary ..508
Q&A ..509
Workshop ..509

Quiz ..509
Exercises ..510

PART IX Appendixes 511

APPENDIX A Answers 513

Hour 1, “About DirectX—The Pieces That Make It Happen”............................513
Quiz ..513

Hour 2, “Our First Step—DirectDraw in a Windows Application”514
Quiz ..514

Hour 3, “Moving On—Grabbing Control of the System”514
Quiz ..514

Hour 4, “Creating the Game Loop” ..514
Quiz ..514

Hour 5, “Make It Move—DirectDraw Animation Techniques”..........................515
Quiz ..515

Hour 6, “DirectSound—Adding Ambience and Sound Effects to Your Game” 515
Quiz ..515

Hour 7, “Applying DirectSound” ..516
Quiz ..516

xvi Sams Teach Yourself DirectX 7 in 24 Hours

00 1634xFM 11/13/99 10:50 AM Page xvi

Hour 8, “DirectMusic—Interactive Music” ..518
Quiz ..518

Hour 9, “Applying DirectMusic” ..519
Quiz ..519

Hour 10, “Introduction to 3D Concepts” ..520
Quiz ..520

Hour 11, “Rendering the 3D Scene” ..520
Quiz ..520
Exercises ..521

Hour 12, “Creating Our First Direct3D Application” ..521
Quiz ..521

Hour 13, “Adding Textures and Z-Buffers to the Scene”....................................522
Quiz ..522

Hour 14, “Adding Realism Through Lighting” ..522
Quiz ..522

Hour 15, “Importing 3D Objects and Animations Into the Scene”524
Quiz ..524

Hour 16, “Modeling a Complex World—Applying Physics and Object
Hierarchies” ..524

Quiz ..524
Hour 17, “Introducing DirectInput—Getting User Input”525

Quiz ..525
Hour 18, “Getting Through to the User—Force Feedback”526

Quiz ..526
Hour 19, “3D Sound—From Panning to Doppler Effects”527

Quiz ..527
Hour 20, “Putting Your Game on the Net—Writing Multiplayer Titles”528

Quiz ..528
Hour 21, “Game Central—Creating Lobbies” ..530

Quiz ..530
Hour 22, “Adding Video with DirectShow” ..531

Quiz ..531
Hour 23, “Bring Surfaces to Life with DirectX Transform”531

Quiz ..531
Hour 24, “Integrating Media Into Web Pages and Applications with

DirectAnimation” ..532
Quiz ..532
Exercise ..533

APPENDIX B Prepare Your Application for Distribution with DirectSetup 535

Index 541

Contents xvii

00 1634xFM 11/13/99 10:50 AM Page xvii

About the Authors
Robert Dunlop is Microsoft’s first and only MVP (Most Valuable Professional) for
DirectX in recognition of his assistance to the game developer community. Robert is a
veteran game developer with more than 10 years of programming experience, and a prin-
cipal of Monarch Interactive, Inc. (www.monarch-interactive.com), a company devoted
to creating new entertainment titles for the PC. Robert works very closely with the
DirectX team at Microsoft and has been on the DirectX Beta Team since 1994.

Mark Martin is a technical analyst for a business service–oriented company, where he
works with a variety of systems and languages specializing in network programming and
distributed computing systems. Additionally, he is a partner in an upstart gaming com-
pany, where he is completing a large multiplayer game using DirectX, playable over the
Internet.

Michael Morrison is a writer, developer, toy inventor, and author of a variety of books,
including Sams Teach Yourself Internet Game Programming with Java in 21 Days and
Windows 95 Game Developer’s Guide. Michael is the creative lead at Gas Hound Games,
a toy company located on the Web at http://www.gashound.com.

Sam Christiansen is a tools and technology programmer at Human Code, an Austin-
based video game company, where he has contributed to several commercial games. In
addition, Sam performs research for the University of Texas Center for Computer
Visualization.

Odin Jensen is a game programmer for Denmark’s largest game developer, where he
works on popular 3D game titles for the Sony Playstation. He provides DirectX wrappers
for beginning game developers at www.nukesoftware.dk.

Josh Martin is a software developer/technical consultant for a custom software firm in
Palatine, Illinois. While his workdays are spent developing business applications, he
spends many hours after work developing multiplayer games for a new gaming company.

Brian Noyes is a software consultant, developer, and technical writer with DomeWorks
Software (http://domeworks.com). A Microsoft Certified Professional, he has developed
Windows modeling and simulation applications and multimedia utilities for government
and commercial projects.

Kenn Scribner’s multimedia experience began in writing flight simulators for the United
States Air Force using OpenGL. Kenn began to explore alternatives to OpenGL with the
advent of DirectDraw and has continued to use both technologies in his component
development.

xviii Sams Teach Yourself DirectX 7 in 24 Hours

00 1634xFM 11/13/99 10:50 AM Page xviii

Recognition from the
Publisher

Sams Publishing would like to give a special thanks to Dale Shepherd. His timely and
accurate assistance on this project helped ensure its completion with true coverage of
Microsoft’s newest version of Microsoft’s DirectX—DirectX 7. By helping on this pro-
ject, Dale has created this, the best book available, for the new user of DirectX 7.

Contents xix

00 1634xFM 11/13/99 10:50 AM Page xix

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an Associate Publisher for Sams, I welcome your comments. You can fax, email, or
write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-581-4770

Email: adv_prog@mcp.com

Mail: Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

xx Sams Teach Yourself DirectX 7 in 24 Hours

00 1634xFM 11/13/99 10:50 AM Page xx

Introduction
What an exciting time to be involved in game design and multimedia driven application
development! Computer hardware continues to evolve and increase in speed in shorter
and shorter cycles. And no segment of computer hardware has seen more growth in
recent years than the video card market.

Of course, there’s more to multimedia than video. There’s sound, user input, and
music to produce. The Web has created wonderful opportunities to present video and ani-
mations.

Of course, our jobs as multimedia application developers haven’t gotten easier. With all
this new technology comes complexity and learning. And with this new technology, the
tools available to us to use it effectively also evolve. Microsoft’s DirectX platform has
grown up quite nicely for us.

Many tools and SDKS are in the market to handle the myriad of different aspects
involved in developing multimedia applications. None are as robust and well rounded as
DirectX. With DirectX, you get a very complete set of APIs to use to write next genera-
tion apps and games—rich with multimedia. There’s the Direct3D portion for creating
the (now standard) 3D world for users. DirectMusic and DirectSound cover all your
musical requirements. DirectInput takes care of any user-input requirements. For multi-
player capability, we’ve got the easy-to-use DirectPlay portion.

There are of course many parts to DirectX. And not many books have covered all of
them together, or presented them in an easy-to-use fashion. That’s why you’re reading
this book. For the first time, you’ll be introduced to the whole of DirectX 7 in a practical
way. We’ve covered version 7 from top to bottom. And we’ve presented real-world sam-
ples to give you hands on experience in using DirectX effectively.

You should come away from reading this book with a working knowledge of DirectX 7,
in all of its aspects. And DirectX is a large topic, to be sure. Microsoft has bundled a lot
of functionality in their latest release, and they’ve made it easier than ever for you, as
programmer and designer, to use it.

So sit back, grab a can of pop, and enjoy our fun and fast ride. We’ve got a lot of ground
to cover, and only 24 hours to cover it in. You’ll enjoy every minute of it, as we’ve
enjoyed writing it. You’re well on your way to writing the next blockbuster fully immer-
sive and multiplayer 3D game. And we’re exited to see what will be new in DirectX 8.

01 1634xIntro 11/13/99 11:09 AM Page 1

01 1634xIntro 11/13/99 11:09 AM Page 2

Hour
1 About DirectX—The Pieces That Make It

Happen

PART I
Introduction to DirectX

02 1634xPart I 11/13/99 11:09 AM Page 3

02 1634xPart I 11/13/99 11:09 AM Page 4

HOUR 1
About DirectX—The
Pieces That Make It
Happen

This hour will prepare you for the first steps in learning to program with
DirectX by providing a general overview of DirectX and what you will need
to begin programming in DirectX.

In this hour, you will

� Learn just what DirectX is
� Learn the components of DirectX
� Learn how to use DirectX
� Be introduced to COM

What Is DirectX?
DirectX is a multimedia development library, created by Microsoft and pro-
vided for royalty-free use in the creation of entertainment titles and other
Windows-based applications.

03 1634xCH01 11/13/99 11:04 AM Page 5

Because Microsoft Windows is the predominant operating system on home computers, a
huge market exists for entertainment products supporting the Windows operating system.
However, although most PCs might share a common operating system, the success of the
PC has led to a vast proliferation of available hardware. A multitude of vendors offer
products with varying capabilities, and they often lack a reliable standard that we can
develop against.

So, how to make the most of our products, while providing support for all popular hard-
ware devices? DirectX tries to bridge the gap by providing a standard software interface,
making these issues transparent to the developer in most cases. You aren’t fully relieved
of the need to test your product with a wide range of hardware, but in many cases,
DirectX meets the need.

All major hardware vendors currently supply device drivers for DirectX, which should
provide a high-performance interface to their hardware. You also can be confident the
drivers you install to support your product are compatible with new hardware in the
future.

DirectX Components
The DirectX SDK is comprised of a wide array of components, allowing you to select
only the functionality you need for your application. This includes interfaces that will
cover all your needs for creating multimedia and entertainment titles. DirectX is actually
contained in two separate packages: the DirectX SDK and the DirectX Media SDK. The
following two sections are overviews of the interfaces offered in these packages.

The DirectX SDK
The DirectX SDK contains the classes that are the foundation of DirectX. These will
provide for the majority of multimedia development requirements.

The following interfaces are included within the DirectX SDK:

� DirectDraw—Provides efficient access to the video memory, resulting in smooth
animation for game titles.

� Direct3D Immediate Mode—Provides high-performance rendering of 3D scenes,
utilizing the latest in 3D accelerators.

� DirectSound—Provides audio playback and mixing, including 3D sound effects.
� DirectMusic—Provides interactive music capabilities, allowing for soundtracks that

change with the game action.

6 Hour 1

03 1634xCH01 11/13/99 11:04 AM Page 6

� DirectInput—Allows input from keyboard, mouse, and game devices. Includes sup-
port for the latest force feedback devices.

� DirectPlay—Provides communications for multiplayer games over the Internet or
local area network (LAN), or through a direct connection via modem or serial
cable.

The DirectX Media SDK
The DirectX Media SDK provides multimedia extensions to supplement the foundation
classes of the DirectX SDK, including:

� DirectX Transform—Transforms allow your application to create dynamic 2D and
3D graphics effects, such as alpha blending and surface distortions. The heart of
the new Microsoft Chromeffects, DirectX Transform has numerous applications
including Web content, entertainment software, and even creating filters for Adobe
PhotoShop.

� DirectAnimation—DirectAnimation provides the means to embed DirectX applica-
tions into HTML pages, allowing for 3D presentation and gaming opportunities on
the Web or intranet.

� DirectShow—DirectShow completes the package, adding video capabilities to
DirectX. Features include streaming video playback for Internet-based video, as
well as support for today’s DVD players.

� Direct3D Retained Mode—Retained Mode provides an easier route to access 3D
hardware by providing interfaces that handle creation and rendering of the scene.

Preparing to Use DirectX
The examples in this book were written for Microsoft Visual C++ 5.0 or above. Although
it is recommended that you use Visual C++ to get the most from this book, it is possible
to compile DirectX applications in other compilers and other languages.

Before you can start programming in DirectX, you will need to make modifications to
your development environment. This will allow the compiler to properly locate and use
the components of DirectX when building your application.

Three areas where you will need to configure your application to compile under DirectX
are

� Setting your compiler to find the DirectX files. This will need to be done only once.
� Linking libraries into the application through the project settings. This will have to

be applied to each application you build with DirectX.

About DirectX—The Pieces That Make It Happen 7

1

03 1634xCH01 11/13/99 11:04 AM Page 7

� Including header files for the DirectX libraries. This will have to be done for each
source code file that will access DirectX components.

Preparing the Compiler
To prepare Visual C++ for DirectX, you will need to set the directory paths for the
Library and Include files that are provided with the SDK. First, bring up Visual Studio
and open the Tools menu. Click on Options and select the Directories tab in the resulting
dialog box, as shown in Figure 1.1.

8 Hour 1

FIGURE 1.1
Setting the path for
SDK header files.

Through this dialog box, you can set what directories Visual C++ will search through
when trying to find files specified in a project. The search directories are categorized into
file types, which can be selected under the Show Directories For selection.

The first thing you will add is the Include files. Click the arrow below and to the right of
Show Directories For, and a list will open, showing the file categories you can select.
Click Include Files, and the existing directory list will appear.

To add the directories from the SDK, locate the directory under which you installed the
DirectX SDK. A typical installation to drive C: will have a structure similar to this:

C:\
C:\MSSDK

C:\MSSDK\BIN
C:\MSSDK\DOC
C:\MSSDK\INCLUDE
C:\MSSDK\LIB
C:\MSSDK\SAMPLES

When you have made sure of the SDK location, double-click the first empty line in the
directory list in Visual Studio and type the location of the Include directory under the
SDK. For example, if DirectX was installed in C:\MSSDK\, as previously shown, you
would enter C:\MSSDK\INCLUDE. You can also click the button to the right of the line
marked ... to browse for the include directory.

03 1634xCH01 11/13/99 11:04 AM Page 8

When you have entered the Include directory, you will need to drag this directory to the
top of the file list. This causes Visual Studio to look in this directory first, which is
important because the existing Visual Studio directories will contain files for older ver-
sions of DirectX that ship with the compiler.

When you have finished adding the Include directory in the proper location, repeat this
process for the Lib directory of the SDK, as shown in Figure 1.2. This folder must be
listed under the Library Files category of the directory list.

About DirectX—The Pieces That Make It Happen 9

1

FIGURE 1.2
Setting the path for
SDK Library files.

Including the SDK in Your Projects
Your compiler is now configured to use DirectX files. You will not need to repeat this
process unless you re-install your compiler, move to another machine, or move the SDK
directory.

Each project you write will have to be connected to libraries and header files in the
DirectX SDK that provide the features of DirectX you want to use. These files are spe-
cific to each module of DirectX, and they will be covered in future chapters as you intro-
duce them into your project.

A Brief Introduction to COM
Before you begin working with DirectX, you must first come to an understanding of the
underlying technology that is used to interface with DirectX: the Component Object
Model, or COM.

The Component Object Model is a widely supported specification for providing
language-independent, reusable programming interfaces.

The COM definition provides for interfaces that are language independent, allowing
COM-based libraries to be used in a variety of programming environments. COM

NEW TERM

03 1634xCH01 11/13/99 11:04 AM Page 9

objects are written to support an interface, and as such, are language independent. A
COM object might be accessed using languages that do not recognize implementations
by other languages, such as C accessing a C++ class. COM does this by providing an
array of pointers to the methods the interface exports. This array borrows its name from
the similar C++ implementation, and is known as the vtable.

One reason COM hides the implementation details behind an interface is because the
objects become reusable and are easily versionable. If you write a DLL in C++, for
example, the C++ proprietary name-mangling algorithm causes the DLL to be unusable
to anyone but a client written with the same C++ compiler. Visual Basic users can’t use
it, nor can Java clients. Another sticky problem with plain DLLs is that versioning DLLs
is problematic. If you, the developer, change and subsequently redeploy the DLL, you
must be absolutely sure none of the DLL ordinals change. If they do, any client that stati-
cally links to your DLL will likely break (crash horribly). But interfaces never change—
that is the definition of an interface. So clients of your COM object need not concern
themselves about new and improved COM objects as long as the COM object supports
the particular interface of interest.

All COM objects begin life with a universal interface, IUnknown. You’ll learn
more about IUnknown later in the chapter, but essentially IUnknown provides two

important mechanisms—object reference counting and interface determination. The ref-
erence counting is important because the COM runtime will unload a COM object not
currently being used (this conserves system resources). As you use the object, you incre-
ment a counter. As you finish with the object, you decrement the counter. When the
counter reaches zero, COM will clean things up for you. Interface determination is
important because COM objects that implement only IUnknown aren’t very useful.
However, IUnknown does enable you to ask the COM object if it supports a particular
interface. If it does, the COM object will provide a pointer to that interface. If it doesn’t,
you’ll receive a NULL pointer (and an error return code) instead. I’ll now go into a bit
more detail—this is important stuff!

Reusable Interfaces and Backward Compatibility
One of the peculiarities of the COM definition is that it does not allow for modification
of existing interfaces. This means that when a new version of DirectX is released, the
existing interfaces cannot be modified. Instead, new interfaces must be created to allow
for additional functionality.

Although this leads to a proliferation of interfaces that provide the same functionality, it
provides seamlessly for backward compatibility. For example, if you had written an

10 Hour 1

NEW TERM

03 1634xCH01 11/13/99 11:04 AM Page 10

application that uses the basic IDirectDraw interface under DirectX 3, you can rest
assured that if the DirectX developers did their work correctly, the same code will oper-
ate under DirectX 7.

The reason for this is that the IDirectDraw interface provided by DirectX 7 is the same
as that provided under earlier revisions. To use the newer features provided by later ver-
sions, you must use newer interfaces, such as IDirectDraw2 or IDirectDraw7.

This does not mean that you can disregard the earlier interfaces in new applications.
When you initialize DirectDraw, for example, you will receive a pointer to the legacy
IDirectDraw interface. This interface is then used to expose the newer interfaces that
you might want to use, as will be seen in the following sections.

The IUnknown Base Class
All COM interfaces are based on the IUnknown interface. IUnknown acts much like an
abstract base class in C++, providing a minimum set of functions that must be imple-
mented and allowing for additional functions to be added by each interface.

Three functions are defined under the IUnknown definition:

Function Description

QueryInterface Used to attain pointers to interfaces that are
derived through the current interface.

AddRef Increments the reference count of the inter-
face. See the upcoming section “Reference
Counting in COM” for more information.

Release Used to release an interface when it’s no
longer needed. Decrements the reference
count and destroys the object if the reference
count reaches zero.

Querying for Interfaces
DirectX provides functions that you will use to attain pointers to the most fundamental
interfaces, such as IDirectDraw. Additional interfaces, including later iterations of an
interface such as IDirectDraw7, can be attained by simply asking an existing interface
for a pointer.

This is achieved using the QueryInterface method, which is defined under the base class
IUnknown. To attain an interface pointer, a Globally Unique Identifier (GUID) for the
desired interface is passed to QueryInterface.

About DirectX—The Pieces That Make It Happen 11

1

03 1634xCH01 11/13/99 11:04 AM Page 11

A Globally Unique Identifier, or GUID, is a unique value used to represent a
COM interface. For example, if you wanted to attain a pointer to the

IDirectDraw7 interface, having already attained a pointer to an IDirectDraw interface
stored in lpDD, you would call the QueryInterface function of the existing interface.
The function is passed the desired GUID and a pointer to be filled with a pointer to the
new interface, as shown in Listing 1.1.

LISTING 1.1 Querying for a New Interface

// query for IDirectDraw7 interface

LPDIRECTDRAW7 lpDD7;
HRESULT ddVal;

if (FAILED(ddVal=lpDD->QueryInterface(IID_IDirectDraw4,
(void **) &lpDD7))) {

// error retrieving interface, handle error code stored in ddVal
}

If successful, QueryInterface returns a value of S_OK. Otherwise, an interface-specific
error code will be returned. The FAILED() macro can be used to determine the success or
failure of any COM function. This macro, provided in Visual C++, returns False if the
return value is S_OK or True on an error.

Reference Counting in COM
Another interesting feature of COM is the capability for multiple elements of a program
to use an interface, without having to worry about the life and scope of the object. For
example, a worker thread might be passed a pointer to an existing interface and continue
to use it even after the main thread has released the object. In essence, this allows for
multiple owners of the same object.

This is achieved through a technique known as reference counting. When an interface is
initially created, it contains an internal count, called the reference counter, which is ini-
tialized to 1. This represents the number of pointers that reference the interface.

Each time a pointer to the object interface is provided through QueryInterface(), or
through a DirectX function that returns an interface pointer, the reference count is
increased by one. Each time the Release() function is called using a pointer to an inter-
face, the reference count is reduced by one. The reference count is then tested, and if it
has reached 0, the object is destroyed.

12 Hour 1

NEW TERM

03 1634xCH01 11/13/99 11:04 AM Page 12

The reference count can also be increased using the AddRef() function, defined in the
IUnknown base class. This is useful if your program is going to maintain multiple copies
of a pointer; for example, if a worker thread will maintain its own pointer to an interface.

About DirectX—The Pieces That Make It Happen 13

1

Be sure that every reference to an object has one (and only one) call to
Release(), whether returned from a DirectX function, through
QueryInterface(), or incremented by AddRef(). Experienced COM program-
mers typically set the pointer variable to NULL to preclude further use after
the object is released.

Summary
In this hour, you got your first glimpse at DirectX. You took a look at the scope and
capabilities of the DirectX SDK and the DirectX Media SDK. You learned how to set up
the Microsoft Visual C++ compiler for use with the DirectX SDKs, as well as the basics
of COM that will be required to access DirectX.

Q&A
Q How can DirectX enable me to develop software that will work properly with

future hardware?

A When you work with DirectX, you never deal directly with the hardware devices.
Instead, access to hardware is through a series of standardized software interfaces
established in DirectX. Hardware vendors, in turn, develop drivers that allow
DirectX to interface with their hardware and implement each of the interfaces
required by DirectX. Although the actual hardware implementation might change,
the software interface that the developer must use remains the same.

Q Will software written for the current version of DirectX need to be rewritten
to work with future releases of DirectX?

A No. The underlying COM definition requires that future versions of DirectX must
provide the same interfaces that are present now. In fact, for new functions to be
added to DirectX, new interfaces must be provided. No changes can be made to the
existing interfaces, guaranteeing that your software will be compatible with future
revisions.

03 1634xCH01 11/13/99 11:04 AM Page 13

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. What does the acronym COM stand for?

2. What macro can be used to test the result of QueryInterface()?

3. Which DirectX interface supports game controllers?

4. What is the base class from which all COM objects are constructed?

Exercises
There are no exercises for this hour.

14 Hour 1

03 1634xCH01 11/13/99 11:04 AM Page 14

Hour
2 Our First Step—DirectDraw in a Windows

Application

3 Moving On—Grabbing Control of the
System

4 Creating the Game Loop

5 Make It Move—DirectDraw Animation
Techniques

PART II
Getting Started with
DirectDraw

04 1634xPart II 11/13/99 11:08 AM Page 15

04 1634xPart II 11/13/99 11:08 AM Page 16

HOUR 2
Our First Step—
DirectDraw in a
Windows Application

In this hour, you will get your first taste of writing a DirectX program. But
before you start coding, you will need to understand the structure behind
DirectDraw.

In this hour, you will

� See how the video system works
� See the components of DirectDraw
� Learn the process of drawing on a surface
� Create your first DirectDraw application

05 1634xCH02 11/13/99 10:48 AM Page 17

Taking a Look at the Video System
When developing an application that uses the video screen, your task is essentially to
control the flow of data between the CPU and the video adapter, which generates the
image on the screen. Figure 2.1 shows the components involved in this process.

18 Hour 2

Video
Out

D.A.C.
Video

Memory
Hardware

Blitter
Graphics
Controller

System
Memory

Video Adapter

Motherboard

CPU

FIGURE 2.1
Components of the
video system.

As you can see, two separate memory components exist in this model. The first, which is
probably quite familiar to you, is the system memory. This is the memory that is linked
to the CPU and used to store applications and data.

The second memory component is video memory. This is memory that resides on the dis-
play adapter and is used to store images for display. A region of this memory, known as
the “frame buffer,” contains the image that is currently being displayed.

The image you see onscreen is created by the DAC, or Digital to Analog Converter. This
unit is responsible for converting the digital values stored in the frame buffer into a corre-
sponding voltage, creating the analog signal that drives the monitor.

To get an image to the screen, an application’s job is to transfer image data into the frame
buffer, which will then be displayed on the monitor. Although this can be fairly straight-
forward, how the transfer is performed can greatly affect the performance of the product.

In particular, it is important to use the video hardware to its fullest extent. Although data
can be transferred piece by piece by the CPU, many video adapters contain specialized
hardware that can efficiently transfer blocks of data to the video memory, either from
system memory or another location in video memory.

Fortunately, DirectDraw handles much of this issue for you, as you will see.

The Components of DirectDraw
DirectDraw is used for all access to the video screen. Whether you are using it directly
for 2D graphics or are using one of the modules of Direct3D or DirectMedia, all access

05 1634xCH02 11/13/99 10:48 AM Page 18

is actually achieved through DirectDraw. This being the case, it is important that you
gain a good understanding of this interface from the start.

Five basic components, or interfaces, that make up DirectDraw are as follows:

� IDirectDraw7 provides access to DirectDraw and allows creation of various other
DirectDraw objects.

� IDirectDrawClipper maintains a list of clipping rectangles to control the display
of DirectDraw applications that are constrained to a window.

� IDirectDrawSurface7 objects represent a region of video or system memory into
which an image can be drawn.

� IDirectDrawPalette objects are used to store an indexed array of colors and to
establish the palette used for color translation when implementing 8-bit graphics
modes.

� IDirectDrawVideoPort provides control of video adapters that have provisions for
live video, such as TV tuner and video capture cards.

The IDirectDraw7 Interface
All access to DirectDraw is achieved through the IDirectDraw7 interface. Acquiring a
pointer to this interface, then, is your first step in writing any DirectX Application that
will use the video screen. Because your application does not initially have any interfaces
from DirectX that you can query, you will use a helper function provided by the
DirectDraw implementation:

The Syntax for DirectDrawCreateEx
HRESULT WINAPI DirectDrawCreateEx(
GUID FAR *lpGUID,
LPDIRECTDRAW7 FAR *lplpDD,
REFIID iid,
IUnknown FAR *pUnkOuter

);

The DirectDrawCreateEx() function is used to acquire a pointer to an IDirectDraw7
interface. If this function is successful, DD_OK is returned.

Parameters:

lpGUID Globally unique identifier (GUID) of a video display
driver. Use NULL to indicate the default driver, or use
one of the following values:

DDCREATE_EMULATIONONLY restricts the driver from
using any hardware-accelerated features.

Our First Step—DirectDraw in a Windows Application 19

2

,
SY

N
TA

X
,

05 1634xCH02 11/13/99 10:48 AM Page 19

DDCREATE_HARDWAREONLY restricts the driver from emu-
lating features that are not hardware accelerated.

lplpDD Address of a variable that will receive a pointer to an
IDirectDraw7 interface.

iid GUID specifying the type of interface to return. Must
be set to IID_IDIRECTDRAW7.

pUnkOuter Reserved for future use. Must be NULL.

When you have an interface to DirectDraw, you must establish in what role it will per-
form. For example, you might want to derive direct access to video in a windowed appli-
cation, or you might want DirectDraw to take sole control of the video hardware,
allowing you to set the display resolutions as you want and use the entire screen surface.
To accomplish this, make a call to the SetCooperativeLevel() method, described in the
following.

The Syntax for IDirectDraw7::SetCooperativeLevel()
HRESULT SetCooperativeLevel(
HWND hWnd,
DWORD dwFlags

);

Sets the cooperative level for a DirectDraw object. Returns DD_OK if successful.

Parameters:

hWnd Handle for the topmost window of the application.

dwFlags Flags defining the cooperative level for DirectDraw.
Multiple flags might be bitwise ORed to define the
cooperative level required.

A wide variety of behaviors can be defined through SetCooperativeLevel(). For your
purposes, you must be aware of a handful of them to get started:

DDSCL_NORMAL The application will behave as a normal
Windows application. Cannot be used
with DDSCL_EXCLUSIVE or
DDSCL_FULLSCREEN.

DDSCL_EXCLUSIVE The application will have exclusive use
of the video hardware. Must be used with
DDSCL_FULLSCREEN.

20 Hour 2

,

,

,
SY

N
TA

X

,

05 1634xCH02 11/13/99 10:48 AM Page 20

DDSCL_FULLSCREEN The application will use the full video
screen rather than operate in a window.
Must be used with DDSCL_EXCLUSIVE.

DDSCL_ALLOWREBOOT Allows reboot using Ctrl+Alt+Delete to
function while in full-screen mode.
Without this flag, this key sequence is
ignored.

DirectDraw Surfaces
To manipulate images in DirectDraw, you will create objects known as surfaces.
A surface provides a rectangular region of memory that can be used for image

storage. As you will see, DirectDraw surfaces can be used in a variety of forms, from
bitmap storage to representation of the video screen.

The IDirectDrawSurface7 interface is used to define a surface. To create an
IDirectDrawSurface7 interface, use the CreateSurface() method of the IDirectDraw7
interface.

The Syntax for IDirectDraw7::CreateSurface()
HRESULT CreateSurface(
LPDDSURFACEDESC2 lpDDSurfaceDesc2,
LPDIRECTDRAWSURFACE7 FAR *lplpDDSurface,
IUnknown FAR *pUnkOuter

);

This function creates a DirectDraw surface. Returns DD_OK on success.

Parameters:

lpDDSurfaceDesc2 Pointer to a DDSURFACEDESC2 structure that
contains a description of the surface to be cre-
ated.

lplpDDSurface Address of a variable that will receive a
pointer to an IDirectDrawSurface7 interface.

pUnkOuter Reserved for future use. Must be NULL.

Our First Step—DirectDraw in a Windows Application 21

2

,
SY

N
TA

X

,

Be sure to clear all unused values in the DDSURFACEDESC2 structure and to ini-
tialize the dwSize member of this structure to sizeof(DDSURFACEDESC2). Failure
to do so results in application errors and possible corruption of memory.

NEW TERM

05 1634xCH02 11/13/99 10:48 AM Page 21

Surfaces in Differing Roles
DirectDraw surfaces appear in a great many roles. Ways in which surfaces will be used
include the following:

� Offscreen surfaces are used to store images for later use.
� The primary surface represents the video frame buffer. Images written to this sur-

face appear immediately on the screen.
� Back buffers are surfaces in video memory that can be exchanged with the primary

surface. These surfaces are used to create an image that will not be displayed until
complete, providing smoother animation.

� Z-buffers can be used in Direct3D to determine the visibility of objects.

Keeping Inside the Lines with the DirectDraw Clipper
When you create the primary surface in DirectDraw, you receive an interface that repre-
sents the entire screen surface, even if you only intend to draw to the area within your
application window. To deal with this, DirectDraw provides the IDirectDrawClipper
object. This object keeps track of the window location and size and tracks the overlap of
other windows, allowing your application to be Windows friendly.

To use a clipper, you need do nothing more than create it from the DirectDraw object,
provide a pointer to the topmost window of the application, and attach it to the primary
surface. Its creation is performed with the IDirectDraw7::CreateClipper() function.

HRESULT CreateClipper(
DWORD dwFlags,
LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,
IUnknown FAR *pUnkOuter

);

This function returns DD_OK on success.

Parameters:

dwFlags Currently unused. Must be set to 0.

lplpDDClipper Address of a variable that will receive a pointer to
an IDirectDrawClipper pointer.

pUnkOuter Currently unused. Must be set to NULL.

The clipper must be created after you have set the cooperative level, but before creation
of your primary surface. When the primary surface has been created, the clipper is
attached using the IDirectDrawSurface7::SetClipper() function. This will be detailed
later in the section “Creating the Primary Surface.”

22 Hour 2

,
SY

N
TA

X

,

05 1634xCH02 11/13/99 10:48 AM Page 22

Drawing on a Surface
Blitting is the process of transferring blocks of image data from one surface to
another. For example, to place an image on a surface, you must move the pixel

data of the image into the surface’s memory. Several ways to do this are as follows:

� By using the Blt() and BltFast() functions provided by IDirectDrawSurface7.
� By accessing the surface memory directly. This is achieved by calling the
IDirectDrawSurface7 function Lock().

� A handle to a temporary drawing context can be acquired using the
IDirectDrawSurface7::GetDC() function. This allows the use of standard GDI
functions, such as those offered by the CDC class.

A Function to Load Bitmaps to a DirectDraw Surface
To illustrate a transfer to a DirectDraw surface, start off by creating a function that loads
a bitmap from a file, creates a surface of matching size, and copies the bitmap to the sur-
face.

To do this, you will use Graphics Device Interface (GDI), as described in the previous
section. Note the following advantages and disadvantages to using GDI with DirectDraw:

Disadvantages:

� Poor performance in GDI compared to DirectDraw blits
� Locks the surface, preventing other processes from using the surface
� Sets a system flag known as Win16MuteX, which essentially stalls other threads,

causing a loss of performance and possible deadlocks

Advantages:

� All the functionality of GDI available
� Automatic color format conversion
� Built-in functions for loading bitmaps

As you can see, GDI is not ideal when you need performance. Where it does come in
quite handy is in the initial loading of bitmaps for later use. The availability of bitmap
loading and color conversion saves you from having to re-invent the wheel. And, because
image loading is normally performed at application startup or other controlled times,
your overall performance will not be affected.

So, to begin with, you will define a function that accepts a pointer to a filename string
and returns a pointer to a newly created surface on success, or returns NULL on failure.

Our First Step—DirectDraw in a Windows Application 23

2

NEW TERM

05 1634xCH02 11/13/99 10:48 AM Page 23

Listing 2.1 shows the beginning of the function, with the loading of the bitmap using
standard GDI functions. Note that this function assumes the existence of an
IDirectDraw7 pointer, stored in the global variable lpDD.

LISTING 2.1 Function Definition and Bitmap Loading Code

1: LPDIRECTDRAWSURFACE7 bitmap_surface(LPCTSTR file_name)
2: {
3: HDC hdc;
4: HBITMAP bit;
5: LPDIRECTDRAWSURFACE7 surf;
6: // load the interface bitmap
7:
8: bit=(HBITMAP) LoadImage(NULL,file_name,IMAGE_BITMAP,0,0,

➥ LR_DEFAULTSIZE|LR_LOADFROMFILE);
9:
10: if (!bit)
11:
12: // failed to load, return failure to caller
13:
14: return NULL;

If the bitmap is created successfully, you will retrieve the dimensions of the bitmap and
attempt to create a IDirectDrawSurface7 of the same dimensions in system memory, as
shown is Listing 2.2. Note that because you do not specify a pixel format, the pixel for-
mat of the primary surface will be used. GDI will automatically convert the pixel formats
for you when transferring the image.

LISTING 2.2 Creating a Matching Surface

1: // get bitmap dimensions
2:
3: BITMAP bitmap;
4: GetObject(bit, sizeof(BITMAP), &bitmap);
5: int surf_width = bitmap.bmWidth;
6: int surf_height = bitmap.bmHeight;
7:
8: // create surface
9:
10: HRESULT ddrval;
11: DDSURFACEDESC2 ddsd;
12: ZeroMemory(&ddsd,sizeof(ddsd));
13: ddsd.dwSize = sizeof(DDSURFACEDESC2);
14: ddsd.dwFlags = DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT ;
15: ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN|DDSCAPS_SYSTEMMEMORY;
16: ddsd.dwWidth = surf_width;
17: ddsd.dwHeight = surf_height;
18:
19: // attempt to create surface
20:
21: ddrval=lpDD->CreateSurface(&ddsd,&surf,NULL);

24 Hour 2

05 1634xCH02 11/13/99 10:48 AM Page 24

Take a look at the surface creation. You define the parameters of the surface to be created
within the DDSURFACEDESC2 that is passed to CreateSurface().

As mentioned before, start off by clearing the structure, effectively setting all member
values to zero. Set the dwSize element to the required memory for the structure as
required.

Now that the structure is ready to be used, set the dwFlags member, which defines which
portions of the structure contain valid parameters that are to be applied to the surface.
The following flags are set:

� DDSD_CAPS—The ddsCaps member contains valid parameters for the surface.
� DDSD_WIDTH—The dwWidth member contains the required width in pixels of the

surface to be created.
� DDSD_HEIGHT—The dwHeight member contains the required height in pixels of the

surface to be created.

Then set the members of dwCaps to specify that you want to create an offscreen surface
in system memory.

When this is complete, check to see whether you have succeeded at creating the surface.
If you have, you will attain a handle to a drawing context for the surface, as shown in
Listing 2.3. On failure, the surface pointer is set to NULL, which will be returned to the
caller to indicate the error.

LISTING 2.3 Checking Surface Creation and Getting a Surface DC

1: // created ok?
2:
3: if (ddrval!=DD_OK) {
4:
5: // no, release the bitmap and return failure to caller
6:
7: DeleteObject(bit);
8: return NULL;
9:
10: } else {
11:
12: // yes, get a DC for the surface
13:
14: surf->GetDC(&hdc);

At this point, you are ready to perform a standard GDI BitBlt function: to transfer the
image between a temporary DC you have created for the loaded bitmap, and the off-
screen surface you have created to store the image.

Our First Step—DirectDraw in a Windows Application 25

2

05 1634xCH02 11/13/99 10:48 AM Page 25

LISTING 2.4 Transferring Image Between Drawing Contexts

1: // generate a compatible DC
2:
3: HDC bit_dc=CreateCompatibleDC(hdc);
4:
5: // blit the interface to the surface
6:
7: SelectObject(bit_dc,bit);
8: BitBlt(hdc,0,0,surf_width,surf_height,bit_dc,0,0,SRCCOPY);

Finally, you are ready to clean up, releasing all the temporary objects that you used for
this transaction. You deallocate the bitmap and the temporary context, and call
IDirectDrawSurface7::ReleaseDC() to release the surface drawing context. Note that
failure to release a surface drawing context will cause any further attempts to write to the
surface to fail.

LISTING 2.5 Cleaning Up

1: // release the DCs
2:
3: surf->ReleaseDC(hdc);
4: DeleteDC(bit_dc);
5: }
6:
7: // clear bitmap
8:
9: DeleteObject(bit);
10:
11: // return pointer to caller
12:
13: return surf;
14: }

That completes the function. You will use this function in your first application to pre-
pare for writing an image to the screen, using the Blt() functions in DirectDraw.

Your First DirectDraw Application
Before going through more technical details, we will get to the moment you’ve been
preparing for—writing your first DirectX application. Your first venture will be to write a
simple application that creates a window and blits a bitmap into the client rectangle of
the window.

26 Hour 2

05 1634xCH02 11/13/99 10:48 AM Page 26

Setting Up the Project
To begin, bring up Visual C++ and select New from the File menu. Open the Projects tab,
and select Win32 Application from the program options provided. Choose a location for
the files, enter the name EXAMPLH2 for the filename, and click OK, as shown in Figure 2.2.

Our First Step—DirectDraw in a Windows Application 27

2
FIGURE 2.2
Creating the project.

In the dialog that follows, select to create a Simple Win32 application, which you will
use as the basic framework to create your program.

Before moving on to coding your application, you need to prepare the project to use
DirectDraw by adding the library file DDRAW.LIB to the project settings for the linker.
This library contains all the functions needed to use DirectDraw, and will be included.
The library uses DirectDraw or a module that relies upon DirectDraw, such as Direct3D.

To use the library, open the Project menu and click the Settings option. In the Project
Settings dialog that opens, click the Link tab to access the linker options, as shown in
Figure 2.3.

FIGURE 2.3
Accessing the Project
linker options.

05 1634xCH02 11/13/99 10:48 AM Page 27

In the Settings For drop box, set All Configurations, which will allow you to insert the
library in both the debug and release build settings at the same time. Next, select the
Object/Library Modules field, and add DDRAW.LIB to the end of the list. Click OK to
complete the setup.

28 Hour 2

If you have not already done so, ensure that the paths to the library and
header files of the SDK are set under Tools, Options, and that they are the
first directories listed (see the section, “Preparing the Compiler,” in Hour 1).

Creating a Windows Framework
At this point, you are ready to begin coding your application. Begin by setting up the
necessary resource files, including required headers, and creating your window’s frame-
work, including the WinMain loop and message handler.

Your resource files will be very simple for this application. The only resource you will
define is a File menu with a single entry for Exit. The program will load a default image
on startup, so no other options are required.

Listings 2.6 and 2.7 show the required definitions in your RESOURCE.H and EXAM-
PLH2.RC.

LISTING 2.6 The EXAMPLH2.RC Resource File

1: #include “resource.h”
2:
3: IDR_MENU MENU DISCARDABLE
4: BEGIN
5: POPUP “&File”
6: BEGIN
7: MENUITEM “E&xit”, IDM_EXIT
8: END
9: END

LISTING 2.7 The RESOURCE.H Resource Header

1: #define IDR_MENU 102
2: #define IDM_EXIT 40001

For this application, you will need to start off with a set of includes, as shown in Listing
2.8. In addition to the standard headers you are accustomed to, two lines have been added
that allow you to use DirectDraw.

05 1634xCH02 11/13/99 10:48 AM Page 28

LISTING 2.8 Required Header Definitions

1: #include “stdafx.h”
2: #include “resource.h”
3: #define INITGUID
4: #include <ddraw.h>

The definition of INITGUID prior to including DirectDraw provides you with access to
the GUID library. The compiler needs access to interpret the GUIDs that are used to
refer to the DirectX interfaces.

The second addition is the inclusion of the DDRAW.H file. This contains the function
prototypes, class and structure definitions, and enumerations that are necessary to com-
municate with the DirectDraw library.

After you have included the header files, a number of global variables need to be defined
for your application, as shown in Listing 2.9. These include the following:

� Interface pointers for your DirectDraw interface, clipper, and surfaces.
� The class name and window caption for your application window.
� A string pointer that will be used to pass error messages to your exit routine.
� String constants for the messages that might be returned by this application.

LISTING 2.9 Global Variable Definitions

1: //------ Image Loading and Initialization Flags ------//
2:
3: BOOL bInit=FALSE;
4:
5: //------ Global Interface Pointers ------//
6:
7: LPDIRECTDRAW7 lpDD=NULL; // DirectDraw object
8: LPDIRECTDRAWSURFACE7 lpDDSPrimary=NULL; // DirectDraw

➥primary surface
9: LPDIRECTDRAWCLIPPER lpClip=NULL; // DirectDraw Clipper Object
10: LPDIRECTDRAWSURFACE7 lpBmp=NULL; // Bitmap surface
11:
12: //------ Window Class Information ------//
13:
14: static char szClass[] = “XmplHr2Class”;
15: static char szCaption[] = “Example - Hour 2”;
16:
17: //------ Error Return String ------//
18:
19: const char *ErrStr=NULL;
20:

Our First Step—DirectDraw in a Windows Application 29

2

continues

05 1634xCH02 11/13/99 10:48 AM Page 29

21: //------ Error Messages ------//
22:
23: const char Err_Reg_Class[] = “Error Registering Window Class”;
24: const char Err_Create_Win[] = “Error Creating Window”;
25: const char Err_DirectDrawCreate[] = “DirectDrawCreate FAILED”;
26: const char Err_Query[] = “QueryInterface FAILED”;
27: const char Err_Coop[] = “SetCooperativeLevel FAILED”;
28: const char Err_CreateClip[] = “CreateClip FAILED”;
29: const char Err_CreateSurf[] = “CreateSurface FAILED”;
30: const char Err_LoadBMP[] = “Error Loading Image”;

Note that you have initialized all pointer values to NULL. This makes it easy to determine
whether a pointer has been initialized, so you can prevent faults caused by invalid
pointers.

Next you will create the WinMain function. Because the real functionality of this program
will be driven by Windows events, the real functionality will be programmed in the mes-
sage handler. This leaves you with a very simple WinMain function, shown in Listing 2.10.

LISTING 2.10 The WinMain Function

1: int PASCAL WinMain(HINSTANCE hInstance,
2: HINSTANCE hPrevInstance,
3: LPSTR lpCmdLine,
4: int nCmdShow)
5: {
6: MSG msg; // windows message structure
7:
8: // initialize the application, exit on failure
9:
10: if (!Init(hInstance, nCmdShow)) {
11: Cleanup();
12: return FALSE;
13: }
14:
15: // handle the message loop till we exit
16:
17: while (GetMessage(&msg, NULL, NULL, NULL)) {
18: TranslateMessage(&msg);
19: DispatchMessage(&msg);
20: }
21:
22: // exit returning final message
23:
24: return (msg.wParam);
25: }

30 Hour 2

LISTING 2.9 continued

05 1634xCH02 11/13/99 10:48 AM Page 30

Initializing DirectDraw and Creating a Clipper
The Init function called in WinMain is a function you will write to handle all initializa-
tion, including creation of the application window, initialization of DirectDraw, and cre-
ation of a clipper and primary surface.

The first portion of your initialization code is familiar territory because you must start off
by creating an application window and establishing its styles and resources. Listing 2.11
shows the beginning of the Init function.

LISTING 2.11 Creating the Application Window

1: static BOOL Init(HINSTANCE hInstance, int nCmdShow)
2: {
3: WNDCLASS wc;
4: HRESULT hRet;
5: DDSURFACEDESC2 ddsd;
6:
7:
8: // Set up and register window class
9:
10: wc.style = CS_HREDRAW | CS_VREDRAW;
11: wc.lpfnWndProc = (WNDPROC) WindowProc;
12: wc.cbClsExtra = 0;
13: wc.cbWndExtra = sizeof(DWORD);
14: wc.hInstance = hInstance;
15: wc.hIcon = NULL;
16: wc.hCursor = LoadCursor(NULL, IDC_ARROW);
17: wc.hbrBackground = (HBRUSH) GetStockObject(BLACK_BRUSH);
18: wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU);
19: wc.lpszClassName = szClass;
20: if (!RegisterClass(&wc)) {
21: ErrStr=Err_Reg_Class;
22: return FALSE;
23: }
24:
25: // Get dimensions of display
26:
27: int ScreenWidth = GetSystemMetrics(SM_CXSCREEN);
28: int ScreenHeight = GetSystemMetrics(SM_CYSCREEN);
29:
30: // Create a window and display
31: HWND hWnd;
32:
33: hWnd = CreateWindow(szClass, // class
34: szCaption, // caption
35: WS_VISIBLE|WS_POPUP, // style
36: 0, // left
37: 0, // top

Our First Step—DirectDraw in a Windows Application 31

2

continues

05 1634xCH02 11/13/99 10:48 AM Page 31

38: ScreenWidth, // width
39: ScreenHeight, // height
40: NULL, // parent window
41: NULL, // menu
42: hInstance, // instance
43: NULL); // parms
44: if (!hWnd) {
45: ErrStr=Err_Create_Win;
46: return FALSE;
47: }
48: ShowWindow(hWnd, nCmdShow);
49: UpdateWindow(hWnd);

After the window has been created, you are ready to get an interface for the DirectDraw
object. Shown in Listing 2.12, this portion of the initialization consists of three steps:

1. Call DirectDrawCreateEx() to get a pointer to the IDirectDraw interface.

2. Next, set the cooperative level for DirectDraw, which in the case of windowed
applications is always DDSCL_NORMAL.

3. Finally, create the clipper and associate it with the application window.

LISTING 2.12 Initializing DirectDraw

1: // Create the main DirectDraw object
2:
3: hRet=DirectDrawCreateEx(NULL,(LPVOID*)&lpDD,IID_IDirectDraw7,NULL);
4: if (hRet != DD_OK) {
5: ErrStr=Err_DirectDrawCreate;
6: return FALSE;
7: }
8:
9:
10: // Set our cooperative level
11:
12: hRet = lpDD->SetCooperativeLevel(hWnd, DDSCL_NORMAL);
13: if (hRet != DD_OK) {
14: ErrStr=Err_Coop;
15: return FALSE;
16: }
17:
18: // create the clipper
19:
20: hRet=lpDD->CreateClipper(NULL,&lpClip,NULL);
21: if (hRet != DD_OK) {
22: ErrStr=Err_CreateClip;
23: return FALSE;
24: }
25: lpClip->SetHWnd(0,hWnd);

32 Hour 2

LISTING 2.11 continued

05 1634xCH02 11/13/99 10:48 AM Page 32

Creating the Primary Surface
Before you can use the services of DirectDraw to write to the screen, you must first cre-
ate a primary surface that will provide access to the screen. To accomplish this, you will
create a surface description matching the surface you need to acquire and call
CreateSurface(). This is illustrated in Listing 2.13.

Our First Step—DirectDraw in a Windows Application 33

2
When working with DirectX interfaces, be careful to ensure that they are
initialized correctly. Data structures should be cleared before initialization,
and the dwSize member present in many of the DirectX structures must be
properly set to the size of the structure. If this is not done, unpredictable
results or outright failure will occur.

LISTING 2.13 Creating the Primary Surface and Attaching the Clipper

1: // Create the primary surface
2:
3: ZeroMemory(&ddsd, sizeof(ddsd));
4: ddsd.dwSize = sizeof(ddsd);
5: ddsd.dwFlags = DDSD_CAPS;
6: ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;
7: hRet = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);
8: if (hRet != DD_OK) {
9: ErrStr=Err_CreateSurf;
10: return FALSE;
11: }
12:
13: // Set the Clipper for the Primary Surface
14:
15: lpDDSPrimary->SetClipper(lpClip);
16:
17: // flag initialization as completed
18:
19: bInit=TRUE;

The clipper created in Listing 2.12 has now been attached to the surface. This will test
your transfers to the video screen to make sure they stay within bounds, clipping them if
needed.

At this point, you are able to perform DirectDraw operations directly to the screen by
using the primary surface. You have set the bInit flag to indicate this to your functions,
so they can test for DirectDraw initialization before attempting to access it.

05 1634xCH02 11/13/99 10:48 AM Page 33

Loading the Image
However, you don’t have anything to put on the screen yet. For this you will use the
bitmap surface() function I discussed earlier in this chapter. The code for this function
can be found starting in Listings 2.1 through 2.5.

When this is complete, you are ready to load the bitmap and create an offscreen surface
to store it in. This is illustrated in Listing 2.14, which completes your initialization code.

LISTING 2.14 Loading the Default Bitmap Image

1: // load the default bitmap
2:
3: lpBmp=bitmap_surface(“vista.bmp”);
4:
5: // display the image
6:
7: DrawImage();
8:
9: return TRUE;
10: }

Blitting an Image to the Screen
Now that you have loaded your image into memory, you can finally write it to the screen.
This is performed in the DrawImage routine that you first call in your initialization, and
which you will call in your message loop in response to refresh commands. The code for
your drawing routine is provided in Listing 2.15.

LISTING 2.15 The Draw Routine

1: void DrawImage()
2: {
3: // return if not ready to draw at this time
4:
5: if (!lpBmp||!bInit)
6: return;
7:
8: // draw the image full screen
9:
10: lpDDSPrimary->Blt(NULL,lpBmp,NULL,DDBLT_WAIT,NULL);
11: }

Note that it is possible this function could be called in response to a message before the
image is loaded, or before DirectDraw has been initialized. To safeguard against this, the
function first checks the bInit flag to ensure that DirectDraw has been loaded and veri-
fies that the pointer to the bitmap surface is valid. If not, the function returns to the caller
without attempting to blit to the screen.

34 Hour 2

05 1634xCH02 11/13/99 10:48 AM Page 34

Tying It All Together in the Message Loop
To provide control over program operation, you will override the default Windows proce-
dure by creating a function named WindowProc(). This function will handle the follow-
ing conditions:

� On receipt of a WM_COMMAND message, check to see whether the Exit option in the
menu has been selected.

� In the result of a WM_PAINT message, used by Windows to notify applications that
they must redraw. This message will be processed with a call to the DrawImage()
function that you have created.

� When a WM_DESTROY message is posted to the application, the Cleanup() function
will be called to allow release of DirectDraw surfaces and interface.

A copy of this function can be found in Listing 2.16.

LISTING 2.16 Window Message Handler

1: LRESULT CALLBACK WindowProc(HWND hWnd, unsigned uMsg, WPARAM wParam,
➥ LPARAM lParam)

2: {
3: switch (uMsg)
4: {
5: case WM_COMMAND:
6: switch (LOWORD(wParam))
7: {
8: case IDM_EXIT:
9:
10: DestroyWindow(hWnd);
11: break;
12: }
13: break;
14:
15: case WM_PAINT:
16: PAINTSTRUCT ps;
17:
18: BeginPaint(hWnd, &ps);
19: DrawImage();
20: EndPaint(hWnd, &ps);
21: break;
22:
23: case WM_DESTROY:
24: Cleanup();
25: PostQuitMessage(0);
26: break;
27:
28: default:

Our First Step—DirectDraw in a Windows Application 35

2

continues

05 1634xCH02 11/13/99 10:48 AM Page 35

29: return DefWindowProc(hWnd, uMsg, wParam, lParam);
30: }
31: return 0L;
32: }

Deallocating the Interfaces
On exit, you must release the DirectX interfaces that you have created during execution
of the program. Two important things to remember when doing this are as follows:

� You must release the interfaces in the reverse order in which they were created.
This ensures that you do not release an interface that is still in use by other inter-
faces which are still in existence.

� Attempting to release an interface that was never created will cause a program
fault. To this end, you will create and use a macro called SafeRelease(), which
checks the validity of an interface pointer before attempting to release it.

The Cleanup() function is shown in Listing 2.17.

LISTING 2.17 Cleaning Up on Exit

1: //------ Cleanup Function to Release Objects ------//
2:
3: #define SafeRelease(x) if (x) { x->Release(); x=NULL; }
4:
5: void Cleanup(void)
6: {
7: // release the interfaces
8:
9: SafeRelease(lpBmp);
10: SafeRelease(lpDDSPrimary);
11: SafeRelease(lpClip);
12: SafeRelease(lpDD);
13: // display error if one thrown
14:
15: if (ErrStr)
16: MessageBox(NULL, ErrStr, szCaption, MB_OK);
17: }

That completes the creation of your first DirectX program. When it has successfully
compiled, place the VISTA.BMP file from the CD-ROM that comes with this book in the
working directory and run the program. The output of this sample program is illustrated
in Figure 2.4.

36 Hour 2

LISTING 2.16 continued

05 1634xCH02 11/13/99 10:48 AM Page 36

If you want, you might substitute a bitmap of your own and rename it VISTA.BMP. The
image will automatically be scaled to fit into the application’s full-screen window, and
the colors remapped to match the current color depth.

Our First Step—DirectDraw in a Windows Application 37

2

FIGURE 2.4
Program output.

Although support for stretching images is guaranteed, many display
adapters do not support shrinking an image. Therefore, if you substitute the
sample bitmap with one that is larger than the current display resolution,
the image might not be properly displayed.

Summary
In this hour, you learned the basics of DirectDraw, including how to initialize
DirectDraw, set up a clipper, and create DirectDraw surfaces. You also explored some of
the functions necessary to allow use of bitmaps in a DirectX application, including load-
ing bitmaps into an offscreen surface and blitting them to the screen.

05 1634xCH02 11/13/99 10:48 AM Page 37

Q&A
Q What advantages does DirectDraw offer over standard Windows GDI?

A The advantages of DirectDraw over GDI are twofold. First, it provides a more
direct path to access the video hardware, which amounts to much greater perfor-
mance. In addition to this, it provides a standard for accelerated hardware capabili-
ties that allow the creation of high-speed special effects.

Q What kind of advanced hardware capabilities can I expect to use with
DirectX?

A This will vary depending on the end user’s system. With accelerated video hard-
ware, you can perform special effects in DirectDraw such as blending images
together or placing live video streams into your application. The really exciting
advances will be found on the 3D side, where you will be able to generate effects
such as shadows, smoke, flames, and explosions.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. Which window handle should be passed to a DirectDraw clipper object?

2. What type of DirectDraw surface is created to represent the screen surface?

3. What type of surface is used to store images for later use?

4. What is the definition of blitting?

Exercises
1. Add a Load command to the menu to provide interactive loading of images.

Remember to check for and release existing image surfaces when loading a new
image.

2. Modify the program to run in a resizable window. This will require reading the
client rectangle coordinates and converting them to absolute screen coordinates
because the primary surface represents the entire screen.

38 Hour 2

05 1634xCH02 11/13/99 10:48 AM Page 38

HOUR 3
Moving On—Grabbing
Control of the System

When coding highly graphical applications, especially when those applica-
tions must be high-performance, you’ll typically want to have as much con-
trol of the client system as possible. For example, perhaps you want to use
the entire screen to render your scenes, or you want to make sure another
application doesn’t pop up and interfere with your rendering cycle. Of
course, your artwork probably won’t use the same color resolution as the
client’s current video setting. And wouldn’t it be nice if there were an easy
way to reduce or eliminate the screen flicker when animating your scene?
All of these things are possible with DirectDraw, as you will see in this
chapter.

In this hour, you will learn

� How to gain full-screen access to the video surface
� How to establish exclusive control of the screen, preventing other

applications from appearing
� How to change the screen resolution and color depth
� How to use multiple-screen surfaces for flicker-free animation

06 1634xCH03 11/13/99 11:00 AM Page 39

Full-Screen Graphics
In the last hour, you learned how to use DirectDraw to access the video screen. However,
you were still working under the Windows desktop, and if your goal is to develop enter-
tainment software, this is not where you want to be.

Almost every entertainment title you find on the shelf today uses the full extent of the
screen. This provides the best experience for the users because it immerses them into the
game without the distraction of other windows on the screen. It also breaks out of the
frame that normally surrounds a window.

Apart from the aesthetic issues, there are definite performance advantages to full-screen
applications. They do not have to share the system with other applications, thus gaining
more processing power for themselves. In addition, a program in Windows normally
must deal with whatever resolution and color depth the user has chosen, which can result
both in poor performance and degradation of graphics quality.

In DirectDraw we are able to break those shackles by taking control of the entire screen
surface and setting the graphics resolution and color depth as we see fit. Most impor-
tantly, when our program is finished, the screen settings are reset to their original setting.
This means that your programs will be user-friendly, instead of requiring the user to
change his settings to accommodate the application.

Getting the System’s Cooperation
The first step that you must take to create a full-screen application is to set the cooper-
ative level, using the SetCooperativeLevel() function. If you want to review the use of
this function, refer to “The IDirectDraw Interface” in Hour 2, “Our First Step—
DirectDraw in a Windows Application.”

There are two flags that you must use to set up for full screen: DDSCL_FULLSCREEN and
DDSCL_EXCLUSIVE. To use multiple flags, you logically-OR the flags together:

lpDD->SetCooperativeLevel(hwnd, DDSCL_FULLSCREEN | DDSCL_EXCLUSIVE |
DDSCL_ALLOWREBOOT);

40 Hour 3

Ensure that the top-level window handle is passed to SetCooperativeLevel
rather than to the handle of a child window. If this is not the case, messages
will not properly be routed to your application.

06 1634xCH03 11/13/99 11:00 AM Page 40

Changing the Screen Resolution
When you have established this level of control, DirectDraw will allow you to set the
screen resolution as you want. In the sample full-screen applications provided with this
book, you will use 640×480 at a color depth of 16 bits, which provides you with 65,536
individual colors.

To set the resolution, call the SetDisplayMode() function of the IDirectDraw7 interface.
The syntax for the function is as follows.

The Syntax for SetDisplayMode()
HRESULT IDirectDraw7::SetDisplayMode(

DWORD dwWidth,
DWORD dwHeight,
DWORD dwBPP,
DWORD dwRefreshRate,
DWORD dwFlags

);

The SetDisplayMode() function changes the current screen resolution and color depth. If
this function is successful, DD_OK is returned.

Parameters:

dwWidth Horizontal resolution.

dwHeight Vertical resolution.

dwBPP Color depth, in bits per pixel.

dwRefreshRate Requested vertical refresh rate for the monitor.
Specify 0 to use the default refresh rate.

dwFlags Sets options for this function. At present, only
DDSDM_STANDARDVGAMODE is provided, which
causes VGA Mode 13 to be used if 320×240×8 is
the requested resolution and color depth.
Normally this value is set to 0.

To set your screen mode to 640×480×16, perform the following call:

lpDD->SetDisplayMode(640,480,16,0,0);

The modes that can be set depend on the hardware capabilities and the video driver
installed. I have elected to use 16-bit graphics at 640×480 because they provide a decent
color depth, while at a resolution that can be supported by almost any DirectX-compati-
ble video card, including older cards that have at least 2MB of video memory. To support
cards with less memory, you can step the samples down to 8-bit color depth.

Moving On—Grabbing Control of the System 41

3,
SY

N
TA

X

,

06 1634xCH03 11/13/99 11:00 AM Page 41

Page Flipping
As you might have previously experienced while programming Windows applications,
creating an application that writes any significant amount of graphics to the screen can
often cause the images to flicker as they are being drawn. This problem is known as
“tearing” and is caused when your program redraws a portion of the screen that is cur-
rently being refreshed by the monitor.

To understand this, take a look at how the monitor places the image on the screen.
Although the image appears continuous to our eyes, it is actually being repeatedly
redrawn, usually at a rate of 60 times per second or more. This results in what is called
“persistence of vision”—the illusion that an image is continuous, caused by the way our
retinas react to very fast changes in light. If we could see what is really happening, the
entire image is really nothing more than a moving dot!

This dot is caused by a beam of electrons that is projected onto the phosphorus
sputtered onto the back of the glass face of the monitor. The screen image is

drawn starting in the upper-left corner, scanning each line from left to right. At the end of
each line, drawing resumes at the start of the next scan line, as shown in Figure 3.1.
After all the scan lines have been drawn, drawing again resumes in the upper-left corner
so the image is redrawn. The rate at which this occurs is known as the vertical refresh.

42 Hour 3

If you must determine what display modes are available at runtime, use the
EnumDisplayModes() function of the IDirectDraw7 interface. To learn more
about enumerating display mode, see the documentation provided in the
DirectX 7 documentation.

FIGURE 3.1
The vertical refresh.

To prevent a diagonal line from appearing across the screen, however, the beam must be
turned off while it traverses the screen. This period is known as the “vertical blanking
interval,” or VBI. During this period, you can get away with drawing to the screen, with-
out the potential for tearing.

NEW TERM

06 1634xCH03 11/13/99 11:00 AM Page 42

So, you just have to wait for the refresh, right? Well, it usually isn’t quite that simple.
The reason is that the blanking interval is very short compared to the amount of data that
must be drawn to the screen each frame. Often it would be impossible to complete the
task in time, and the refresh would catch you right in the middle of drawing on the
screen.

The solution is to prepare your work ahead of time. Rather than drawing directly to the
primary surface, as you did in the previous hour, you will create a second surface in
video memory, a back buffer, which you can use to prepare your image while the previ-
ously drawn image is being displayed. When the blanking interval occurs, you can swap
the two surfaces and have the next image on the screen long before the blanking interval
is over (see Figure 3.2). This technique is known as double buffering.

Moving On—Grabbing Control of the System 43

3FIGURE 3.2
Swapping buffers
during the blanking
interval.

Redraw Redraw

Blanking Interval

Redraw

1

2

1

2

2

1

Creating the Flipping Chain
To use double buffering, you must create a second surface in video memory that is iden-
tical to the primary surface. There can be more than one back buffer, if needed—for
example, two back buffers are sometimes used in a technique called, appropriately, triple
buffering.

This collection of surfaces is collectively known as the flipping chain. To create the flip-
ping chain, you must specify the number of buffers when you create your primary sur-
face, as shown in Listing 3.1.

LISTING 3.1 Creating the Flipping Chain

1: // Create the primary surface with 1 back buffer
2:
3: DDSURFACEDESC2 ddsd;
4: DDSCAPS2 ddscaps;
5: ZeroMemory(&ddsd,sizeof(ddsd));
6: ddsd.dwSize = sizeof(ddsd);
7: ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

continues

06 1634xCH03 11/13/99 11:00 AM Page 43

8: ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
9: DDSCAPS_FLIP |
10: DDSCAPS_COMPLEX;
11: ddsd.dwBackBufferCount = 1;
12: ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);

As you can see in comparing this with the example from Hour 2, the following modifica-
tions were made to this code:

� We have added the DDSD_BACKBUFFERCOUNT flag to indicate to the
CreateSurfaces() function that there is a valid back buffer count stored in
ddsd.dwBackBufferCount.

� The dwBackBufferCount member of our surface description has been set to 1, to
indicate that one back buffer should be created in addition to our primary surface.

� We have added DDSCAPS_FLIP and DDSCAPS_COMPLEX to the surface capabilities,
indicating that the surface will be complex (consist of multiple surfaces), and that
the surfaces can be exchanged, or “flipped.”

The additional surfaces are created at the same time as your primary surface, but they are
not returned by your call to CreateSurface(). They are instead created as “attached”
surfaces. You can retrieve a pointer to the back buffer by using the
GetAttachedSurface() command, as shown in Listing 3.2.

LISTING 3.2 Retrieving the Back Buffer

1: // Fetch back buffer interface
2:
3: ddscaps.dwCaps=DDSCAPS_BACKBUFFER;
4: ddrval=lpDDSPrimary->GetAttachedSurface(&ddscaps,&lpDDSBack);
5: if (ddrval!=DD_OK) {
6: ErrStr=Err_CreateSurf;
7: return FALSE;
8: }

Using Page Flipping
When you have created your surfaces, double buffering is easy to implement. The pri-
mary difference is that you blit to the back buffer rather than the primary surface. When
a frame is completed, you use the Flip() function from the primary surface, as shown in
the following:

lpDDSPrimary->Flip(NULL,DDFLIP_WAIT);

44 Hour 3

LISTING 3.1 continued

06 1634xCH03 11/13/99 11:00 AM Page 44

The Flip() command causes the primary surface to be exchanged with the back buffer.
The flip might not occur immediately; instead, waiting for the next blanking interval
before actually performing the exchange.

The syntax for Flip() is as follows.

The Syntax for Flip()
HRESULT IDirectDrawSurface7::Flip(

LPDIRECTDRAWSURFACE7 lpDDSurfaceTargetOverride,
DWORD dwFlags

);

The Flip() function causes DirectDraw to exchange surfaces, flipping the first back
buffer to the screen and moving the screen surface to the end of the chain. If this func-
tion is successful, DD_OK is returned.

Parameters:

lpDDSurfaceTargetOverride Surface to be exchanged with the primary sur-
face. Normally this is set to NULL, which causes
the function to set the first back buffer as the vis-
ible surface.

dwFlags Flags that govern the behavior of this function.
There are a variety of optional flags, which can
be found in the SDK documentation. Normally,
this is set to DDFLIP_WAIT, which causes the
function to wait until the flip is properly set up if
the hardware is waiting for another operation to
complete.

Slide Show—A Simple Surface-Flipping
Application

To apply what you have learned, you will begin by creating a slide-show application. The
program will allow the user to step through a series of screen shots from a 3D action
game, using the arrow keys for navigation.

The images for this example can be found with the sample code for this hour on the CD-
ROM. There are seven images, labeled SLIDE001.BMP through SLIDE007.BMP.

Moving On—Grabbing Control of the System 45

3

,
SY

N
TA

X

,

06 1634xCH03 11/13/99 11:00 AM Page 45

Setting Up the Application
To begin with, you will need to create a new Win32 project, just as you did in the section
Setting Up the Project in Hour 2. Include the code from the bitmap_surface() function
that you created in the last hour, as well as the error string assignments.

After the project is created, begin by loading the appropriate headers and establishing the
global variables that are needed for this application (see Listing 3.3).

LISTING 3.3 Setting Up the Application

1: /*---*/
2: // Sample Application
3: //
4: // Chapter 3
5: //
6: // Learn DirectX in 24 Hours
7: // by Robert Dunlop
8: //
9: // Copyright (C) 1999
10: /*---*/
11:
12: //------ Include Files ------//
13:
14: #include “stdafx.h”
15: #define INITGUID
16: #include <stdio.h>
17: #include <ddraw.h>
18: #include <mmsystem.h>
19:
20: //------ Window Class Information ------//
21:
22: static char szClass[] = “XmplHr3Class”;
23: static char szCaption[] = “Example - Hour 3”;
24:
25: //------ Global Interface Pointers ------//
26:
27: LPDIRECTDRAW7 lpDD=NULL;
28: LPDIRECTDRAWSURFACE7 lpDDSPrimary=NULL;
29: LPDIRECTDRAWSURFACE7 lpDDSBack=NULL;
30:
31: //------Define number of images and set up list of file names ------//
32:
33: #define IMAGE_COUNT 7
34:
35: char file_names[IMAGE_COUNT][256] = { “slide001.bmp”,
36: “slide002.bmp”,
37: “slide003.bmp”,
38: “slide004.bmp”,
39: “slide005.bmp”,
40: “slide006.bmp”,

46 Hour 3

06 1634xCH03 11/13/99 11:00 AM Page 46

41: “slide007.bmp”,
42: };
43:
44: //------ DirectDraw Surfaces for Image Storage ------//
45:
46: LPDIRECTDRAWSURFACE7 lpSlides[IMAGE_COUNT];
47:
48: //------ current image displayed------//
49:
50: int cur_image=0;

There are a few additions to the global code of this application, compared to the previous
example. Here is an overview of the changes:

� A new surface pointer, lpDDSBack, is provided for the back buffer.
� The constant IMAGE_COUNT indicates the number of images in the slide sequence.
� The array file_names[] contains the names of the files to be loaded.
� lpSlides[] will contain an array of pointers to surfaces containing the slide

images.
� The index of the currently displayed image is stored in cur_image.

Initializing the Application
Your initialization of the application window and the creation of a DirectDraw7 will
remain the same as in the last hour. When that has been achieved, you are ready to
switch to full-screen graphics, setting the cooperation level, and then the display mode
as in Listing 3.4.

LISTING 3.4 Establishing Full-Screen Display

1: // Set our cooperative level
2:
3: ddrval = lpDD->SetCooperativeLevel(hWnd,

DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);
4: if (ddrval != DD_OK) {
5: ErrStr=Err_Coop;
6: return FALSE;
7: }
8:
9: // Set the display mode
10:
11: ddrval = lpDD->SetDisplayMode(640, 480, 16, 0, 0);
12: if (ddrval !=DD_OK) {
13: ErrStr=Err_DispMode;
14: return FALSE;
15: }

Moving On—Grabbing Control of the System 47

3

06 1634xCH03 11/13/99 11:00 AM Page 47

Next, you will create your primary surface and back buffer (see Listing 3.5). This will
form a flipping chain that you can use to preload the next slide onto the back buffer,
avoiding any tearing that would otherwise occur.

LISTING 3.5 Creating the Flipping Chain

1: // Create the primary surface with 1 back buffer
2:
3: DDSURFACEDESC2 ddsd;
4: DDSCAPS2 ddscaps;
5: ZeroMemory(&ddsd,sizeof(ddsd));
6: ddsd.dwSize = sizeof(ddsd);
7: ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
8: ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
9: DDSCAPS_FLIP |
10: DDSCAPS_COMPLEX;
11: ddsd.dwBackBufferCount = 1;
12: ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);
13: if (ddrval!=DD_OK) {
14: ErrStr=Err_CreateSurf;
15: return FALSE;
16: }
17:
18: // Fetch back buffer interface
19:
20: ddscaps.dwCaps=DDSCAPS_BACKBUFFER;
21: ddrval=lpDDSPrimary->GetAttachedSurface(&ddscaps,&lpDDSBack);
22: if (ddrval!=DD_OK) {
23: ErrStr=Err_CreateSurf;
24: return FALSE;
25: }

Assuming that everything succeeded up to this point, you have only one item remaining:
loading the slides. In Listing 3.6, note that we are only loading the first image. The rea-
son for this is loading time—the files are 900KB each, and will take a significant amount
of time to load.

LISTING 3.6 Retrieving the Back Buffer

1: // load the first image and display it
2:
3: lpSlides[0]=bitmap_surface(file_names[0]);
4: if (!lpSlides[0])
5: return FALSE;
6: draw_slide();
7:
8: // return success to caller
9:
10: return TRUE;
11: }

48 Hour 3

06 1634xCH03 11/13/99 11:00 AM Page 48

However, you only need to have the first image when you initially render the page. This
allows you to get to the screen much faster.

When you have drawn your first image, you can load other images into memory, and
most likely have them fully loaded before the user attempts to view the next slide. This
provides the user with the illusion that all nine of the images have loaded in the time that
it really took to load only the first image.

Cleaning Up
The cleanup function, Listing 3.7, will be almost identical to the previous example with
the exception that you must release the slide images, which are stored in a different array
than the previous sample used.

LISTING 3.7 Cleaning Up On Exit

1: //------ Cleanup Function to Release Objects ------//
2:
3: #define SafeRelease(x) if (x) { x->Release(); x=NULL;}
4:
5: void Cleanup()
6: {
7: // release loaded image surfaces
8:
9: for (int i=0;i<IMAGE_COUNT;i++)
10: SafeRelease(lpSlides[i]);
11:
12: // release DirectDraw interfaces
13:
14: SafeRelease(lpDDSPrimary);
15: SafeRelease(lpDDSBack);
16: SafeRelease(lpDD);
17:
18: // display error if one thrown
19:
20: if (ErrStr) {
21: MessageBox(NULL, ErrStr, szCaption, MB_OK);
22: ErrStr=NULL;
23: }
24: }

Drawing a Slide
Now you are ready for the drawing of your slide. The function shown in Listing 3.8 will
display the image referenced by the index stored in cur_image. The code implementation
can be broken down into several operations:

� Ensure that the current slide image is loaded.
� Blit the current image to the back buffer.

Moving On—Grabbing Control of the System 49

3

06 1634xCH03 11/13/99 11:00 AM Page 49

� Get a device context and use it to place instructions on the back buffer.
� Call Flip() to exchange the primary surface with the back buffer.
� Load the next slide in the sequence if it is not already loaded.
� Load the previous slide in the sequence if it is not already loaded.

LISTING 3.8 Drawing the Current Image and Loading Adjacent Images

1: //------ Function to Draw a Slide ------//
2:
3: void draw_slide()
4: {
5: // make sure we have the current image, don’t draw if we fail
6:
7: if (!lpSlides[cur_image]) {
8: lpSlides[cur_image]=bitmap_surface(file_names[cur_image]);
9: if (!lpSlides[cur_image])
10: return;
11: }
12:
13: // draw the object to the screen
14:
15: lpDDSBack->BltFast(0,0,lpSlides[cur_image],NULL,DDBLTFAST_WAIT);
16:
17: // draw instructions for slide show
18:
19: HDC hdc;
20: if (DD_OK==lpDDSBack->GetDC(&hdc)) {
21: SetTextColor(hdc,0x00ff7f00);
22: SetBkColor(hdc,0x000000);
23: TextOut(hdc,20,400,”<- Previous Slide”,16);
24: TextOut(hdc,540,400,”Next Slide ->”,13);
25: SetTextColor(hdc,0x0000ffff);
26: TextOut(hdc,235,440,”Press Arrow Keys to Change Slides”,33);
27: lpDDSBack->ReleaseDC(hdc);
28: }
29:
30: // flip to the primary surface
31:
32: lpDDSPrimary->Flip(0,DDFLIP_WAIT);
33:
34: // make sure we have the next and previous image
35: // this insures that our next selection is quickly
36: // available, while we only need to load one image
37: // when the program starts.
38:
39: int next_slide=(cur_image>=IMAGE_COUNT-1) ? 0 : cur_image+1;
40: if (!lpSlides[next_slide])

50 Hour 3

06 1634xCH03 11/13/99 11:00 AM Page 50

41: lpSlides[next_slide]=bitmap_surface(file_names[next_slide]);
42:
43: int prev_slide=(cur_image<1) ? IMAGE_COUNT-1 : cur_image-1;
44: if (!lpSlides[prev_slide])
45: lpSlides[prev_slide]=bitmap_surface(file_names[prev_slide]);
46: }

Handling Slide Navigation
You can reuse the WinMain() function from Hour 2 to process your messages. To allow
the user to navigate through the slide show, you will add processing of the WM_KEYDOWN
message to your message handling in WindowProc().

When an arrow key is pressed, you increment or decrement the image number as
requested, and ensure that the image index does not exceed the allowed values. If the
index exceeds either end of the image list, it will be reset to the opposite end of the list.
This causes the image list to wrap, allowing the user to continuously scroll through the
list.

When the image number has been set, a call is made to the render_slide() that you just
created, as seen in Listing 3.9.

LISTING 3.9 HandlingSlide Show Navigation

1: //------ Windows Message Handler ------//
2:
3: LRESULT CALLBACK
4: WindowProc(HWND hWnd, unsigned uMsg, WPARAM wParam, LPARAM lParam)
5: {
6: switch (uMsg)
7: {
8:
9: case WM_DESTROY:
10: Cleanup();
11: PostQuitMessage(0);
12: break;
13:
14: case WM_KEYDOWN:
15: switch (wParam)
16: {
17: case VK_LEFT:
18:
19: // Process the LEFT ARROW key.
20:
21: cur_image--;

Moving On—Grabbing Control of the System 51

3

continues

06 1634xCH03 11/13/99 11:00 AM Page 51

22: if (cur_image<0)
23: cur_image=IMAGE_COUNT-1;
24: draw_slide();
25: break;
26:
27: case VK_RIGHT:
28:
29: // Process the RIGHT ARROW key.
30:
31: cur_image++;
32: if (cur_image>IMAGE_COUNT-1)
33: cur_image=0;
34: draw_slide();
35: break;
36:
37: case VK_ESCAPE:
38:
39: // exit the program on escape
40:
41: DestroyWindow(hWnd);
42: break;
43:
44: // Process other non-character keystrokes.
45:
46: default:
47: break;
48: }
49:
50: default:
51: return DefWindowProc(hWnd, uMsg, wParam, lParam);
52: }
53: return 0L;
54: }

Sample Output
When the application is compiled, ensure that the bitmaps are in the working directory,
and execute the application. You can use the right and left arrow keys to navigate through
the slides. Pressing the Escape key or Alt+F4 will exit the application.

A sample image from the slide show is shown in Figure 3.3.

52 Hour 3

LISTING 3.9 continued

06 1634xCH03 11/13/99 11:00 AM Page 52

Summary
In this hour, you implemented your first full-screen DirectDraw application, taking full
control of the video resources. Along the way, you have learned

� How to take full-screen control under DirectDraw
� The definition and purpose of double buffering
� How to create a flipping chain

Q&A
Q What kind of overhead does using page flipping add to your program?

Doesn’t it take a lot of time to transfer the entire screen image an extra time,
after already having to construct the screen in the first place?

A No, there is actually little overhead at all because the image is not actually moved
between the surfaces. Instead, there is a memory pointer on the video card that
determines where the display memory starts. By simply setting this pointer to point
to the back buffer, the next frame will be drawn from the new location without any
need to move the image.

Moving On—Grabbing Control of the System 53

3

FIGURE 3.3
Sample of slide show
display.

06 1634xCH03 11/13/99 11:00 AM Page 53

Q If I switch the surfaces in the flipping chain, and the primary surface gets
shifted to the back, wouldn’t I have to change which surface I write to each
time?

A DirectDraw handles this for you, so you don’t have to worry about keeping track of
it. The surface pointers are actually pointers to a structure that points to the physi-
cal location of the surface. Internally, DirectDraw exchanges the pointers that your
variables point to, so the primary surface pointer will always be the visible surface.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. What window handle must be used when setting the cooperative level?

2. What function can be used to determine the display modes available?

3. When using double buffering, which surface receives blits when you redraw the
screen?

4. What is a complex surface?

Exercises
1. Modify the program to use triple buffering. To do this, simply set the back buffer

count to 2 when creating the primary surface, and DirectDraw will do the rest.

2. Try using different standard resolutions, such as 800×600 or 1024×768. Note the
difference in performance when working at higher resolutions.

3. With the application at the resolutions previously shown, insert your own images
that match the new screen size. Note how much performance is gained by not hav-
ing to stretch the images.

54 Hour 3

06 1634xCH03 11/13/99 11:00 AM Page 54

HOUR 4
Creating the Game Loop

In this hour, you will get your first look at the workings of an action game.
You will create a sample application with a smooth scrolling background,
which you will use as a framework to build upon in the next few hours.

In this hour, you will learn

� The mechanics of using a game loop to coordinate animation.
� How to implement a message loop that provides game-level perfor-

mance while being friendly to other Windows applications.
� How to control motion of objects in a scrolling scene.
� How to clip images against the screen area.
� How to use timers to provide smooth motion at a predetermined rate.

Conceptual Overview of the Game
Loop

At the heart of every good game is a small, efficient piece of code—as you
will see, it is literally what makes it tick.

07 1634xCH04 11/13/99 11:05 AM Page 55

When creating a game, you create what is known as a scene—a collection of objects that
make up the world of the game. This will often include a variety of different objects,
including

� A background image that provides a place setting for the game.
� Static objects that are at fixed locations, such as buildings, trees, and other objects.
� Moving objects, including enemy characters and the players themselves.

To put all this in action, you must be able to handle the motion and interaction of the
objects in the scene and display them in a realistic fashion.

A scene is a collection of objects that make up the world in which the player
travels in a game.

Animation in a game occurs much like that in a cartoon flipbook—the scene is displayed
repeatedly, each time moving the objects in small increments to provide the appearance
of motion.

This is where the game loop comes in. The game loop begins after you have performed
any initialization, and loops until the game is finished. During each pass through the
loop, you calculate the new position for each object, deal with any action that occurs
between objects, and display the scene in its new position. A flowchart of this is shown
in Figure 4.1.

56 Hour 4

Done?

Handle Windows
Messages

Exit

Calculate Object
Positions

Display Objects

FIGURE 4.1
The structure of a typi-
cal game loop.

The game loop will take place within the WinMain() function and will be part of your
Windows message loop. However, there are some distinct differences from a typical mes-
sage loop, and there are some performance changes that you must make.

NEW TERM

07 1634xCH04 11/13/99 11:05 AM Page 56

In some ways, this will depart from the normal recommendations for a Windows-based
application. This is because the performance requirements for a game are much greater
than a desktop-based application, and because of this, your program will demand as
much of the processor’s time slice as it can reasonably achieve.

This will change the way in which you handle messages, and it will also change the way
in which you deal with performing program tasks in the game. In particular, you will be
departing from the message-based structure of a Windows application, in which each
task is prompted by a message sent to the application, and instead you will call routines
directly from the message loop.

Writing a Better Message Loop
Probably the greatest difference between a desktop-based application and a game appli-
cation is that the game doesn’t sleep as much. This might seem like an odd analogy, but
it is nonetheless an accurate one.

When writing the message loop, you typically use the GetMessage() command to
receive the next message from the queue, as shown in Listing 4.1.

LISTING 4.1 A Typical Message Loop

1: MSG msg;
2: while GetMessage(&msg,NULL,NULL,NULL) {
3: TranslateMessage(&msg);
4: DispatchMessage(&msg);
5: }

The problem with this is in the definition of the GetMessage() command. The function
checks for a message on the queue, and if one is found, it is returned—so far, so good.
However, if there is no message in the queue, the idle loop is called, and then the appli-
cation is suspended until there is a message available.

So, in essence, a Windows application spends most of its time suspended, coming to life
only when an event prompts it into action.

For a game title, this will not do. The challenge of rewriting the entire screen many times
a second, while dealing with sound, user input, and object motion, requires that you use
every bit of processor time you can get your hands on.

To accomplish this, begin by replacing the GetMessage() command with
PeekMessage(). It provides the same function as GetMessage(), but returns to the calling
function even if no message is available. Listing 4.2 shows a revised message loop that

Creating the Game Loop 57

4

07 1634xCH04 11/13/99 11:05 AM Page 57

uses this function. The new loop stays active even when there is not a message pending
for the application to act upon.

LISTING 4.2 Revised Message Loop Using PeekMessage()

1: BOOL notDone=TRUE;
2: while (notDone) {
3:
4: // is there a message to process?
5:
6: if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
7:
8: // yes, is it a quit message?
9:
10: if (msg.message==WM_QUIT)
11: notDone=FALSE;
12:
13: // dispatch the message
14:
15: TranslateMessage(&msg);
16: DispatchMessage(&msg);
17:
18: } else {
19:
20: // Handle game loop functions here
21: }
22: }

There is one other major distinction in this loop: You are now calling your game func-
tions from within the message loop rather than relying on the receipt of a timer message
to activate them.

Achieving Smooth Playback
During each pass through the game loop, a new set of object positions is calculated and
displayed. This set of positions, and the display that is rendered from it, is known as a
frame.

A frame is the image rendered from a scene at a specific point in time, based on
the current location of the view and other objects within the scene.

To provide a smooth perception of motion, it is important that the time between the
frames is even. To make sure that the time is even between frames, you will use a timer.

58 Hour 4

NEW TERM

07 1634xCH04 11/13/99 11:05 AM Page 58

Using Timers in the Loop
In the last hour, you used a timer message, WM_TIMER, to notify you when you needed to
display the next frame. Although this might work for a slide show, it does not provide
sufficient performance for a game title. In addition to the normal overhead of message
handling, WM_TIMER is considered to be of a lower priority than any other Windows mes-
sage.

So, instead of relying on the timer message, you will need to read the time during each
pass of the message loop and test to see whether it is time to render the next frame.

Selecting the Timer
When timing frame animations, it is important to use an accurate, high-resolution timer
to set your tempo. The timeGetTime() function will provide an accuracy of 1 millisec-
ond (1/1000th of a second, abbreviated “ms”).

This function takes no parameters and returns a value of type DWORD containing the cur-
rent system time. The starting point is arbitrary, so you cannot determine the time of day
this way, but it will suit your needs—you can determine the elapsed time in milliseconds
by subtracting a previously returned value.

Although this is sufficient for your needs, a higher resolution is preferred and will result
in better performance and smoother playback. To achieve this, you can use the Perfor-
mance Counter, a hardware timer that normally runs at 3.19MHz. This results in accu-
racy of better than one microsecond (1/1,000,000th of a second, abbreviated “us”).

This timer is not available on all machines. It is supported on all current processors being
produced, but some older processors did not support it. For this reason, it is necessary
that you test for existence of the timer, and if it is unavailable, your program should fall
back to using timeGetTime() instead.

Two functions are used to handle the performance counter. The first,
QueryPerformanceFrequency(), is used to determine the frequency of the counter. This
allows for support of hardware counters of any frequency, and using this function rather
than assuming the frequency of this counter ensures that your program will be compati-
ble with future hardware.

There is also a secondary purpose for this function—if the performance counter is not
available, the function will fail. This allows you to test for the presence of the perfor-
mance timer. The syntax for this function is shown in the following.

Creating the Game Loop 59

4

07 1634xCH04 11/13/99 11:05 AM Page 59

The Syntax for QueryPerformanceFrequency()
BOOL QueryPerformanceFrequency(

LONGLONG *lpFrequency
);

The QueryPerformanceFrequency() function tests for the existence of a performance
counter and determines the frequency if one exists. If successful, this function returns a
non-zero value. If unable to locate a performance counter, this function will return zero.

Parameters:

lpFrequency Pointer to a 64-bit integer that is to receive the
frequency of the counter, measured in counts per
second.

The second function used with the performance counter is QueryPerformanceCounter(),
which is used to read the current time count. Note that as with timeGetTime(), this func-
tion also returns a count that is based on an arbitrary starting time.

The Syntax for QueryPerformanceCount()
void QueryPerformanceCount(

LONGLONG *lpCount
);

The QueryPerformanceCount() function reads the current value of the performance
counter.

Parameters:

lpCount Pointer to a 64-bit integer that is to receive the current
count.

By reading the frequency of the performance counter during initialization, you attain a
value that can later be used to scale the counter value to a value in seconds.

60 Hour 4

,
SY

N
TA

X

,

,
SY

N
TA

X

,

To use timeGetTime() or the performance counter functions in an applica-
tion, you will need to include mmsystem.h in your source code. Linking your
application with the library winmm.lib is required as well.

07 1634xCH04 11/13/99 11:05 AM Page 60

Your First Piece of Animation: A Scrolling
Background

Now that you have laid down the basis you need to create animation, you are ready to
start out on your first animated scene. Your application will provide a scrolling back-
ground of a city, responding to keyboard input from the user.

The background that you use will be significantly wider than the screen surface. Images
such as this can be difficult to store in memory because each bitmap must reside in a
continuous block of memory. To deal with this, we have divided the image we will use in
this exercise into tiles—smaller images that can be displayed side by side to form a
larger, continuous image. In this case, the image is divided into three bitmaps, as illus-
trated in Figure 4.2.

Creating the Game Loop 61

4
A CB

AC C AB

Original Image
FIGURE 4.2
Tiling images.

Note that in addition to dividing the images, the original image provided for this exercise
also has matching ends so that when the scene loops, there is no visible seam.

Setting Up the Application
You are now ready to start the exercise. Start a new project for this exercise, and begin
with the initialization code in Listing 4.3.

LISTING 4.3 Initial Setup of the Application

1: //------ Include Files ------//
2:
3: #include “stdafx.h”
4: #define INITGUID
5: #include <stdio.h>
6: #include <ddraw.h>
7: #include <mmsystem.h>
8:
9: //------ Window Class Information ------//
10:
11: static char szClass[] = “XmplHr4Class”;
12: static char szCaption[] = “Example - Hour 4”;

07 1634xCH04 11/13/99 11:05 AM Page 61

This is the same as before, with one exception—we have added mmsystem.h to our
includes to support the timing functions that we will need.

Next add the global variables and constant definitions, as shown in Listing 4.4.

LISTING 4.4 Globals and Constant Definitions

1: //------ Define Position Limits ------//
2:
3: #define MIN_POS 0.0
4: #define MAX_POS 50000.0
5:
6: //------ Global Interface Pointers ------//
7:
8: LPDIRECTDRAW7 lpDD=NULL;
9: LPDIRECTDRAWSURFACE7 lpDDSPrimary=NULL;
10: LPDIRECTDRAWSURFACE7 lpDDSBack=NULL;
11:
12: //------ DirectDraw Surfaces for Object Storage ------//
13:
14: LPDIRECTDRAWSURFACE7 back_surf[3]={NULL,NULL,NULL};
15:
16: //------ Define Starting Position and Speed ------//
17:
18: double x_pos=25000.0; // player position
19: double move_rate=0.0; // player motion

The DirectDraw surfaces for the flipping chain, as well as the DirectDraw object itself,
are just as they were in the previous hour. This time, however, we have added the follow-
ing definitions:

� MIN_POS, MAX_POS—Defines the minimum and maximum position the player might
scroll to.

� back_surf[3]—Array of surface pointers to contain the tiles of the background
image.

� x_pos—Position of the player view, measured in pixels.
� move_rate—Rate of motion of the player view, measured in pixels per second.

This program will also use the error codes established in Hour 2, “Our First Step—
DirectDraw in a Windows Application,” (Listing 2.9), as well as the bitmap_surface()
function (Listings 2.1 through 2.5) for loading bitmap files onto offscreen surfaces. Copy
these functions from the previous examples and insert them into the new application.

Setting Up Initialization
The initialization of this application will proceed exactly as in the last hour, with the
exception that you will load all three tile images before entering the message loop. At

62 Hour 4

07 1634xCH04 11/13/99 11:05 AM Page 62

this point, copy the Init() function from Hour 3, “Moving On—Grabbing Control of
the System,” sample (Listings 3.4 and 3.5) into your new application.

To provide image loading, create a new function labeled load_images(), which will
return True on success or False on failure. Replace the final return statement of the
Init() function with the code shown in Listing 4.5 to call the function and test the
results.

LISTING 4.5 Calling the Image Loading Function

1: // load the images and set up the layers
2:
3: if (!load_images())
4:
5: // return with error if failed
6:
7: return FALSE;
8:
9: // return success to caller
10:
11: return TRUE;
12: }

Next, create the load_images() function, which will load the three image bitmaps into
offscreen surfaces. The listing for this function is provided in Listing 4.6.

LISTING 4.6 The load_images() Function

1: //------ Function to load object images and set up layers ------//
2:
3: BOOL load_images()
4: {
5: // load the background images
6:
7: back_surf[0]=bitmap_surface(“city1.bmp”);
8: if (!back_surf[0]) {
9: ErrStr=Err_LoadImage;
10: return FALSE;
11: }
12: back_surf[1]=bitmap_surface(“city2.bmp”);
13: if (!back_surf[1]) {
14: ErrStr=Err_LoadImage;
15: return FALSE;
16: }
17: back_surf[2]=bitmap_surface(“city3.bmp”);
18: if (!back_surf[2]) {
19: ErrStr=Err_LoadImage;
20: return FALSE;

Creating the Game Loop 63

4

continues

07 1634xCH04 11/13/99 11:05 AM Page 63

21: }
22:
23: // return success to caller
24:
25: return TRUE;
26: }

Controlling Motion Through Keyboard Input
To control the motion of our scrolling background, our program will accept keyboard
input by providing a handler for the WM_KEYDOWN message. The windows message handler
shown in Listing 4.7 will be used to handle the pressing of the right and left arrow to
control motion, and will cause the program to exit if the Esc key is pressed.

LISTING 4.7 The Game Loop’s Window Procedure with Keyboard Handling

1: //------ Windows Message Handler ------//
2:
3: LRESULT CALLBACK
4: WindowProc(HWND hWnd, unsigned uMsg, WPARAM wParam, LPARAM lParam)
5: {
6: switch (uMsg)
7: {
8: case WM_KEYDOWN:
9: switch (wParam)
10: {
11: case VK_LEFT:
12:
13: // Process the LEFT ARROW key.
14:
15: if (move_rate>-600.0)
16: move_rate-=120.0;
17: break;
18:
19: case VK_RIGHT:
20:
21: // Process the RIGHT ARROW key.
22:
23: if (move_rate<600.0)
24: move_rate+=120.0;
25: break;
26:
27: case VK_ESCAPE:
28:
29: // exit the program on escape
30:

64 Hour 4

LISTING 4.6 continued

07 1634xCH04 11/13/99 11:05 AM Page 64

31: DestroyWindow(hWnd);
32: break;
33:
34: // Process other non-character keystrokes.
35:
36: default:
37: break;
38: }
39:
40: case WM_DESTROY:
41: Cleanup();
42: PostQuitMessage(0);
43: break;
44:
45: default:
46: return DefWindowProc(hWnd, uMsg, wParam, lParam);
47: }
48: return 0L;
49: }

Note that this routine increments the value of the move_rate variable each time the arrows
are pressed, increasing or decreasing the rate by 120 pixels per second. The velocity is
clipped to ensure that it does not exceed 600 pixels per second in either direction.

Cleanup on Exit
As before, you will implement a routine labeled Cleanup() that will be called on exit to
release the DirectDraw interfaces, including your three image surfaces. The revised func-
tion is shown in Listing 4.8.

LISTING 4.8 The Cleanup() Function

1: void Cleanup()
2: {
3: // release loaded image surfaces
4:
5: SafeRelease(back_surf[0]);
6: SafeRelease(back_surf[1]);
7: SafeRelease(back_surf[2]);
8:
9: // release DirectDraw interfaces
10:
11: SafeRelease(lpDDSPrimary);
12: SafeRelease(lpDD);
13:
14: // display error if one thrown

Creating the Game Loop 65

4

continues

07 1634xCH04 11/13/99 11:05 AM Page 65

15:
16: if (ErrStr) {
17: MessageBox(NULL, ErrStr, szCaption, MB_OK);
18: ErrStr=NULL;
19: }
20: }

Creating Your Game Loop
Now for the moment you’ve prepared for—writing the game loop that will put your ani-
mation into play. Begin by creating the WinMain() function (shown in Listing 4.9), ini-
tializing the window, and calling Init() to set up DirectDraw.

LISTING 4.9 The WinMain() Function

1: //------ Application Loop ------//
2:
3: int APIENTRY WinMain(HINSTANCE hInstance,
4: HINSTANCE hPrevInstance,
5: LPSTR lpCmdLine,
6: int nCmdShow)
7: {
8: MSG msg; // message from queue
9: LONGLONG cur_time; // current time
10: BOOL notDone=TRUE; // flag for thread completion
11: DWORD time_count; // milliseconds per frame
12: LONGLONG perf_cnt; // performance timer frequency
13: BOOL perf_flag=FALSE; // flag determining which timer to use
14: LONGLONG next_time=0; // time to render next frame
15: LONGLONG last_time=0; // time of previous frame
16: double time_elapsed; // time since previous frame
17: double time_scale; // scaling factor for time
18:
19: // initialize the application, exit on failure
20:
21: if (!Init(hInstance, nCmdShow)) {
22: Cleanup();
23: return FALSE;
24: }

At this point, we have also defined several variables that we will be using in our timing
routines. These will become apparent as you use them.

Before you can begin the message loop, you must determine what timer is available and
set up timing parameters accordingly. The code for this is shown in Listing 4.10. This
code performs the following:

66 Hour 4

LISTING 4.8 continued

07 1634xCH04 11/13/99 11:05 AM Page 66

� Reads the frequency of the performance counter, if available, into perf_cnt.
� Sets perf_flag to True if the performance counter is available or False if it is not.
� Determines the number of ticks of the available timer that constitute 1/30th of a sec-

ond, for a 30FPS frame rate.
� Calculates the scaling factor that must be multiplied by the timer count to convert

them to seconds, and stores this value in time_scale.
� Saves the initial timer count in last_time, which will be used in each frame to

determine the time the last frame was displayed.
� Sets the current time into the next_time variable, which will be set after each ren-

der to reflect the time the next frame should begin.

LISTING 4.10 Testing the Performance Counter

1: // is there a performance counter available?
2:
3: if (QueryPerformanceFrequency((LARGE_INTEGER *) &perf_cnt)) {
4:
5: // yes, set time_count and timer choice flag
6:
7: perf_flag=TRUE;
8: time_count=perf_cnt/30;
9: QueryPerformanceCounter((LARGE_INTEGER *) &next_time);
10: time_scale=1.0/perf_cnt;
11:
12: } else {
13:
14: // no performance counter, read in using timeGetTime
15:
16: next_time=timeGetTime();
17: time_scale=0.001;
18: time_count=33;
19: }
20:
21: // save time of last frame
22:
23: last_time=next_time;

With this accomplished, you are ready to enter your message loop (see Listing 4.11). As
discussed in “Writing a Better Message Loop,” earlier in this hour, we will use
PeekMessage() to ensure that we retain control of the processor.

Creating the Game Loop 67

4

07 1634xCH04 11/13/99 11:05 AM Page 67

LISTING 4.11 The Message Loop

1: // run till completed
2:
3: while (notDone) {
4:
5: // is there a message to process?
6:
7: if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
8:
9: // yes, is it a quit message?
10:
11: if (msg.message==WM_QUIT)
12:
13: notDone=FALSE;
14:
15: // dispatch the message
16:
17: TranslateMessage(&msg);
18: DispatchMessage(&msg);
19:
20: } else {

After you have received and dispatched messages, you are ready to check your timing for
the frame.

When any available messages have been processed, you are ready to perform the timing
for the loop. Your first step will be to read the appropriate timer function and compare it
against next_time to determine whether it is time to render a new frame as seen in
Listing 4.12.

LISTING 4.12 Checking the Frame Time

1: // use the appropriate method to get time
2: // and calculate elapsed time since last frame
3:
4: if (perf_flag)
5: QueryPerformanceCounter((LARGE_INTEGER *) &cur_time);
6: else
7: cur_time=timeGetTime();
8:
9: // is it time to render the frame?
10:
11: if (cur_time>next_time) {

The initial value of next_time is set to the starting time, so the next time the counter is
read, this test will pass. Each time you render a frame, increment this to reflect the
period that should transpire before the next frame.

68 Hour 4

07 1634xCH04 11/13/99 11:05 AM Page 68

If this test should pass, it means that it is time to render the frame. In this case, you must
calculate the time that has elapsed and move the background an appropriate distance.
This is illustrated in Listing 4.13.

LISTING 4.13 Moving the Objects According to Elapsed Time

1: // yes, calculate elapsed time
2:
3: time_elapsed=(cur_time-last_time)*time_scale;
4:
5: // save frame time
6:
7: last_time=cur_time;
8:
9: // move the screen position
10:
11: x_pos+=move_rate*time_elapsed;
12: if (x_pos<MIN_POS) {
13: x_pos=MIN_POS;
14: move_rate=0;
15: }
16: if (x_pos>MAX_POS) {
17: x_pos=MAX_POS;
18: move_rate=0;
19: }
20:
21: // render the frame
22:
23: render_frame();
24:
25: // set time for next frame
26:
27: next_time = cur_time + time_count;
28: }
29: }
30: }
31:
32: // exit returning final message
33:
34: return (msg.wParam);
35: }

As you can see, the preceding code finishes off the message loop, after it places a call to
render_frame() and calculates the time for the next frame.

Rendering a Scrolling Background
All that remains now is the rendering of the scene, which is encompassed in the
render_frame() function that you will call from the message loop.

Creating the Game Loop 69

4

07 1634xCH04 11/13/99 11:05 AM Page 69

The background in this image is tiled, meaning that images are displayed side by
side to form a single, continuous image. Three background images, each 400

pixels wide, will form an apparent background of 1200 pixels.

The images are placed in order, side by side, with the first image starting at an x coordi-
nate of 0, the next image starting at 400, and the final starting at 1200. In both directions,
the pattern will repeat so that you can scroll continuously in either direction.

You must address two issues to properly display this background. You must scroll the
images (move them side to side), and then you must determine what area of the images
are visible and “clip” them to the screen.

Clipping is the process of removing the areas of an image that exceed the limits
of the screen, prior to rendering it.

To do this, you do not actually change the image. Instead, you will adjust the coordinates
of the source and destination rectangle so that they only encompass those portions of the
image that are on the screen.

To achieve scrolling, offset the x position of the images by the value that you have calcu-
lated and stored in tile_pos. This will cause the images to move sideways in relation to
the screen, providing a perception that the viewer is moving side to side.

For example, Figure 4.3 illustrates the effect of setting x_pos to a value of –500.0. Each
of the images slides to the left, moving the first image off the screen and revealing part
of the third image in the process.

70 Hour 4

FIGURE 4.3
The effect of applying
an offset of –500 to the
scene.

A

400

CB

B C

0,0

640,480

tile_pos= -500.0

-500 -100 300 700

NEW TERM

NEW TERM

07 1634xCH04 11/13/99 11:05 AM Page 70

The code listing for render_frame(), which implements scrolling and clipping of the
images as discussed, is shown in Listing 4.14.

LISTING 4.14 The render_frame() Function

1: //------ Function to Draw a Frame ------//
2:
3: void render_frame()
4: {
5: RECT rct; // source rectangle of blit
6: long tile_pos; // position of viewable tile
7:
8: // loop through the tiles
9:
10: for (int i=0;i<3;i++) {
11:
12: // calculate position of viewable tile
13:
14: tile_pos=400*i+((long) (x_pos)/1200)*1200;
15: if (tile_pos+1200<x_pos+640) tile_pos+=1200;
16:
17: // is this object on the screen?
18:
19: if (tile_pos+400>=x_pos) {
20:
21: // yes, calculate the offset to the left edge of the

➥screen
22:
23: int screen_x=tile_pos-x_pos;
24:
25: // clip the object if necessary
26:
27: rct.left=0;
28: rct.top=0;
29: rct.right=400;
30: rct.bottom=480;
31:
32: // test for clipping
33:
34: if (screen_x<0) {
35: rct.left-=screen_x;
36: screen_x=0;
37: } else if (screen_x+rct.right>640) {
38: rct.right=640-screen_x;
39: }
40:
41: // draw the object to the screen
42:
43: lpDDSBack->BltFast(screen_x,0,back_surf[i],&rct,

Creating the Game Loop 71

4

continues

07 1634xCH04 11/13/99 11:05 AM Page 71

➥DDBLTFAST_WAIT);
44: }
45: }
46:
47: // flip to the primary surface
48:
49: lpDDSPrimary->Flip(0,DDFLIP_WAIT);
50: }

That completes the creation of your first DirectX program. When it has successfully
compiled, place the CITY1.BMP, CITY2.BMP, and CITY3.BMP files from the CD-ROM that
comes with this book in the working directory and run the program. The output of this
sample program is illustrated in Figure 4.4.

72 Hour 4

LISTING 4.14 continued

FIGURE 4.4
Program output.

Summary
In this hour, you have learned how to create the underlying structure of a high-
performance entertainment title. This new knowledge includes

� Creating a high-performance game loop
� Synchronizing motion to time
� Clipping to the screen surface
� Utilizing high-performance timers

07 1634xCH04 11/13/99 11:05 AM Page 72

Q&A
Q The sample program in this hour was set to run at 30FPS, which is equivalent

to the refresh rate achieved on video. What are the practical limits for frame
rates on today’s computers, and how will this change in the future?

A With the video accelerators that are widely available, frame rates of 60FPS or
higher are readily achieved. In many cases, the video card is actually limited by the
refresh rate of the monitor, even with some monitors now achieving refresh rates
well over 100HZ.

Q In the message loop that we created, the game only renders in the else state-
ment, in the event that there are no messages. Why is this? Don’t we want to
render at the first available chance?

A Although this does give some leverage over our execution to the messaging system,
this is a necessary compromise. This prevents the queue from overflowing when
the system is heavily loaded. Imagine, for example, that your rendering function
caused messages to be sent to the queue. If the frame rate was not able to be sus-
tained, the frame would render each pass through the loop. This would generate
more messages each frame, even though only one message would be processed—
leading to a growing queue of unprocessed messages.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. What is the standard frequency for the performance counter?

2. What is the resolution of the timeGetTime() function?

3. True or false: The Performance Counter is available on all systems.

4. True or false: The WM_TIMER message has a higher priority than other messages in
the message queue.

Exercises
1. Put your own images into the engine, and adjust the scrolling routine to deal with

different width images.

2. Try images that exceed the height of the screen. Add vertical scrolling and clipping
to accommodate them.

Creating the Game Loop 73

4

07 1634xCH04 11/13/99 11:05 AM Page 73

07 1634xCH04 11/13/99 11:05 AM Page 74

HOUR 5
Make It Move—
DirectDraw Animation
Techniques

In this hour, you will study techniques that allow you to form complex ani-
mations using DirectDraw. This will include

� Blitting nonrectangular shapes using transparency
� Compositing objects together to form a scene
� Learning about Z-Ordering and parallax, and using them to create the

perception of 3D in your application
� Adding an interface to your program with a nonrectangular viewport

Transparent Blits
In previous hours, you learned how to draw a rectangular portion of an
image to the screen. However, often you will need to draw objects to the
screen that are not rectangular. To create a scene, you must be able to com-
posite objects of varying shapes to create a layered image.

08 1634xCH05 11/13/99 11:08 AM Page 75

The answer to this problem is one that you have probably seen on television
every day—it is how a reporter appears in front of a weather map on the nightly

news, and it is the same power that allowed Superman to fly. Both use a technique called
color keying, which replaces any pixels of a specified color in one image with corre-
sponding pixels from a second image.

In video and film, this is accomplished by recording the subject in front of a colored
matte, usually using blue or green. When the image is processed, this color is replaced
by pixels from a background image, as shown in Figure 5.1.

76 Hour 5

NEW TERM

FO R SALE

FOR SALE

FIGURE 5.1
Color keying objects
over a background.

Note that the subject image cannot contain the key color or these areas will not appear in
the final image. For example, if a subject were to wear blue pants and the key color was
blue, his legs would not be displayed.

In DirectDraw, the same method can be used to blit objects of any shape onto a
DirectDraw surface. For example, if you wanted to draw a tree over a background previ-
ously blitted to the surface, you would create an image of the tree surrounded by a
unique color filling unwanted portions of the rectangle.

The Two Flavors of Color Key
Two methods for color keying defined under DirectDraw are source color keying and
destination color keying. The difference is in which surface is tested for the key color—
the foreground (source) surface or the background (destination) surface:

� Source keying is the most commonly used. As in the video methods described pre-
viously, the portions of the image that are not a specified color will be drawn onto
the target. The object appears to be in front of the image it is being drawn to. If this
capability is not available in hardware, it will be emulated through DirectX’s
Hardware Emulation Layer (HEL).

� Destination keying replaces only those sections of the target surface that contain
the key color. This technique is useful for filling masked areas in a background and
gives the appearance that the drawn image is behind the existing background, being
seen through gaps in the background where the color key was set. No emulation is
available for destination color keying, so it must be available in hardware.

08 1634xCH05 11/13/99 11:08 AM Page 76

The majority of applications will use source color keys because they do not depend on
the capability of the user’s video adapter.

Choosing a Key Color
The first step in color keying is choosing a key color—this must be done before you can
create the images that will be used in your application. Two major concerns exist when
choosing a key color. They are as follows:

� The key color must be unique. That is, the color must not appear in any part of the
image that you want to appear onscreen. Avoid colors that are close to object col-
ors as well because reduction in color depth might cause these colors to be indis-
tinguishable from the key color.

� Because the color format of the surface might differ from the original bitmap, you
must be able to reliably determine what the color key will convert to in any pixel
format you intend to use.

The first criteria depends on your material. The second one might not be as clear at first.
Basically, three choices exist that you will find work well for key colors. They are as fol-
lows:

� Black—No matter what pixel format you convert it to, it will always be zero (0).
However, black is common in images, and if you use this key, you must settle for
levels of gray in your images rather than a true black.

� White is convenient, too, because you can determine the new value by turning all
the bits in the given pixel format on. But once again, white is a common color, and
features such as highlights will often reach pure white.

� The final option, which we will use in our examples, is to use a saturated primary
color (red, green, or blue). Saturated means that the maximum value is set for the
color and all other colors are absent. This is usually the most practical option
because images rarely approach complete saturation of a primary color.

Converting the Key Color
In our color-keyed images, we will use saturated green—that is, an RGB value of
(0,255,0). To set this as the key color, we must determine how this color will be repre-
sented in our current pixel format. Because we are using a 16-bit format for our screen,
this is trickier than most. The reason is that when we set 16-bit color, we might have to
deal with either of two color formats, as shown in Table 5.1.

Make It Move—DirectDraw Animation Techniques 77

5

08 1634xCH05 11/13/99 11:08 AM Page 77

TABLE 5.1 Common 16-Bit Pixel Formats

Color Element 15-Bit (5/5/5) 16-Bit (5/6/5)

Red 5-Bits 5-Bits

Green 5-Bits 6-Bits

Blue 5-Bits 5-Bits

Bitmask XRRRRRGG GGGBBBBB RRRRRGGG GGGBBBBB

To determine the final value of your key color, you must first find out what bits in the
pixel correspond to green (your key color). To do this, you can use the
GetPixelFormat() command to retrieve information on the color format of the primary
surface, as shown in Listing 5.1.

LISTING 5.1 Determining the Pixel Format

1: DDPIXELFORMAT ddpf;
2: ddpf.dwSize=sizeof(ddpf);
3: lpDDSPrimary->GetPixelFormat(&ddpf);

This function provides format information, written to the DDPIXELFORMAT structure
passed to it, for a variety of different surface types. This includes information for alterna-
tive surfaces such as video buffers and depth buffers, which are not of concern to you at
this point. The following members are of interest in determining the pixel format:

dwRGBBitCount The number of bits per pixel

dwRBitMask The bitmask for red bits

dwGBitMask The bitmask for green bits

dwBBitMask The bitmask for blue bits

dwAlphaBitDepth The bitmask for alpha bits

The bitmasks are 32-bit double words with the bits for the corresponding color set to
true. To better understand color bitmasks, take a look at Figure 5.2 to see how the bit-
masks assemble to form an RGB color value.

78 Hour 5

Red Green Blue

Input 10110010 00111011 01110011

Bitmask 1111100000000000 0000011111100000 0000000000011111

Value 10110 001110

1011000111001110

01110

FIGURE 5.2
Conversion of color
value to 16-bit (5/6/5)
color.

08 1634xCH05 11/13/99 11:08 AM Page 78

With the bitmasks in hand, it is easy to convert any RGB value into the current pixel for-
mat. For example, to convert an RGB value that contains 25 percent red, 50 percent
green, and 75 percent blue, multiply each bitmask by the desired percentage and then
logically AND the result with the original bitmask. The calculation for this value is
shown in Listing 5.2.

LISTING 5.2 Converting an RGB Color Value to the Current Pixel Format

1: Color = (((DWORD)(DwRBitMask * 0.25)) & DwRBitMask) +
2: (((DWORD)(DwGBitMask * 0.50)) & DwGBitMask) +
3: (((DWORD)(DwBBitMask * 0.75)) & DwBBitMask);

Because the bitmasks have all the bits for a specific color set, they represent the brightest
value for that color. By multiplying each bitmap by a factor between 0.0 and 1.0, you can
scale the brightness of each color over its entire range.

Going back to the desired key color of RGB (0,255,0), which would be expressed in this
format as (0.0,1.0,0.0), it becomes apparent that the equation can be simplified. The
unused colors, red and blue, have factors of zero and can thus be eliminated from the cal-
culation. Green has a factor of 1.0, representing the full brightness of green, so you can
simply use your bitmask for green without scaling it, as shown in Listing 5.3.

LISTING 5.3 Shortcut to Determining Key Color for RGB 0,255,0

1: // Determine proper key for pixel format
2:
3: DWORD KeyColor = ddpf.dwGBitMask;

Setting the Color Key in DirectDraw
The use of color keying is determined by the settings of the DirectDraw surfaces
involved in the blit. To set the color key for an object’s surface to a given key color, use
the SetColorKey() function.

HRESULT SetColorKey(
DWORD dwFlags,
LPDDCOLORKEY lpDDColorKey

);

This function returns DD_OK on success.

Parameters:

DwFlags provides information on the color key and might be one of the following values:

Make It Move—DirectDraw Animation Techniques 79

5

,
SY

N
TA

X
,

08 1634xCH05 11/13/99 11:08 AM Page 79

DDCKEY_COLORSPACE Indicates that a range of colors is
requested.

DDCKEY_DESTBLT Indicates that destination color keying
will be used for blitting.

DDCKEY_DESTOVERLAY Indicates that destination color keying
will be used for overlays.

DDCKEY_SRCBLT Indicates that source color keying will be
used for blitting.

DDCKEY_SRCOVERLAY Indicates that source color keying will be
used for overlays.

lpDDColorKey Pointer to a DDCOLORKEY structure con-
taining the desired key color.

The code shown in Listing 5.4 will set the color key for an object to the value previously
stored in KeyColor.

LISTING 5.4 Setting the Color Key for a Surface

1: // set color key
2: DDCOLORKEY key;
3: key.dwColorSpaceLowValue = KeyColor;
4: key.dwColorSpaceHighValue = KeyColor;
5: surface->SetColorKey(DDCKEY_SRCBLT, &key);

The first step you will perform is setting up a structure of type DDCOLORKEY, which pro-
vides a means for you to define a key color as a specific color or range of colors.

In our case we will be using a single key color, so set this color as both the upper and
lower limit for the key color. We will stick with this in our examples because hardware
support is required to perform color keys over a range of colors.

If you want to, and if the hardware supports it, you can specify a range of colors that will
be interpreted as the key color. For example, using the method demonstrated earlier for
converting to the current pixel format, you could define low and high values of
(0.0,0.9,0.0) and (0.1,1.0,0.1) for your color key. This would interpret any pixel red and
blue values from 0 percent–10 percent AND a green value between 90 percent and 100
percent as being set to the key color.

Such methods are often used when working with color keys in photographs or video,
where you cannot rely on having the key color being read as a consistent pixel value.

80 Hour 5

,

,

08 1634xCH05 11/13/99 11:08 AM Page 80

Making It Look Like 3D
By now you should be quite comfortable working with x and y coordinates to represent
locations on the screen. To represent a scene in 3D, we are missing something—depth.

In 3D graphics, points are represented using three coordinates—x, y, and z. x and y are
similar to the familiar 2D coordinates: x represents the position to the right or left of the
viewer, whereas y represents the location above or below the horizon.

The new value, z, is used to represent the depth of a coordinate—that is, the distance
ahead or behind the viewer. Although we do not have a z coordinate in DirectDraw sur-
faces, you can simulate objects with different depths by simulating the visual cues that
your mind uses to determine where an object lies in a scene.

Z-Ordering
Depth perception, or the ability to judge distance, is one function of the brain that we
tend to take for granted—mostly because it is so automatic. In real life, we determine
much of our information about depth, particularly for close objects, from the difference
between the images perceived in our eyes. The closer an object is, the greater the differ-
ence there will be between what right and left eyes see. A quick illustration of this can be
performed by holding your finger a couple of inches in front of your nose and alternately
closing one eye and then the other. The finger will appear to shift from one side to the
other. If you try this again with your finger at arm’s length, the effect is not as great.

But there must be more than this at play because we can determine the depths of objects
in 2D images such as photographs and video. So how does this happen, and what can we
do to trick the brain into thinking our image is 3D?

One of the cues that we use is how images overlap in a scene. For example, consider
Figure 5.3.

Make It Move—DirectDraw Animation Techniques 81

5

A Drawn First

A

B

B Drawn First

A

B

FIGURE 5.3
The effect of drawing
order on perceived
distance.

Each image contains two objects that are of identical size and shape. However, the per-
ception of depth is quite different between them. In the image on the left, the circle
obscures a portion of the square, and thus we assume the circle to be in front. In the
image on the right, by contrast, the square obscures a portion of the circle—and thus we
assume the square to be in front.

08 1634xCH05 11/13/99 11:08 AM Page 81

Looking back on our definition of source color keying, which is the method we will be
using, you will see that images drawn to a surface appear to be located in front of previ-
ously drawn images. This feature allows us to generate an overlap in the order we chose,
providing the viewer with an illusion of depth.

To use this, all you must do is control the order in which objects are drawn. This is
accomplished by dividing the objects in your scene into layers. A layer is a group of
objects that you want to appear to be at a certain distance from the viewer and do not
overlap each other.

Creating a scene requires that you draw the objects in the proper order, known as the
Z-Order. The objects in the back are drawn first, and then the next layer forward, and
then finally the foreground.

Parallax—Depth Perception of Moving Objects
Being able to simulate overlap is just half of the picture, however. Other effects come
into play over distance and become even more apparent when we put the scene in
motion.

When we move, objects that are close to us appear to move in the opposite direction.
This is a phenomenon known as relative motion. The objects aren’t really moving, we
are. But something interesting happens when we look at objects that are farther away—
they do not seem to move as fast. Consider the scene in Figure 5.4, which illustrates the
same scene viewed from different angles.

82 Hour 5

F O R SALE
F O R SALE

F O R SALE

FIGURE 5.4
Parallax in action.

Note how the sign has moved much farther than the house in the background. This effect
is known as parallax and is key to how we perceive depth in a moving scene.

To use this in your program, you will associate a floating-point value with each layer that
you will multiply against the motion of the scene. Higher values will be used for those
layers that are to appear closer to the user, causing them to move faster than those objects
in the background.

08 1634xCH05 11/13/99 11:08 AM Page 82

Putting It All Together
At this point, you are ready to start making modifications to last hour’s example. You
will display the cityscape that you used in the last hour in a scrolling engine, but this
time you will use multiple layers to provide a 3D effect.

There will be four separate layers, each of which you will tile as you did in the previous
example. In addition to this, you will add a taxi cab that will move across the scene inde-
pendent of your position.

To begin with, define a structure to contain information on each layer, and create an
array to hold the definition of the four layers. The definition of the structure is shown in
Listing 5.5.

LISTING 5.5 A Structure for Storing Layer Information

1: // define number of layers
2:
3: #define NUM_LAYERS 4
4:
5: // define structure for layers
6:
7: struct LAYER {
8: LPDIRECTDRAWSURFACE7 surf;
9: BOOL blit_flags;
10: WORD start_x;
11: WORD start_y;
12: WORD interval;
13: double parallax;
14: WORD width;
15: WORD height;
16: } layers[NUM_LAYERS];

The members of this structure contain the following information:

Variable Description

surf Contains a pointer to the sur-
face containing the image for
this layer.

blit_flags Contains the flags to be used
when calling BltFast(),
including color key flags if
required.

Make It Move—DirectDraw Animation Techniques 83

5

continues

08 1634xCH05 11/13/99 11:08 AM Page 83

start_x Defines the location of the left-
most occurrence of the image
on this layer. Images will be
repeated to the right of this
point every interval pixels.

start_y Defines the Y coordinate for all
copies of this image.

interval Defines the distance on the x-
axis between copies of this
image.

parallax Defines the parallax factor for
this layer. This is a multiplier
applied to the scroll rate
attained from the keyboard con-
trols.

width Defines the surface width of the
source image.

height Defines the surface height of
the source image.

This array will be filled as you load the images at startup, and will then be used to
sequence through the layers in the rendering loop.

Before loading the images, you will need to define global pointers to reference the
DirectDraw surfaces in which you will store them. The global definitions for our surfaces
is shown in Listing 5.6.

LISTING 5.6 Surfaces for Storing Layer Images

1: //------ DirectDraw Surfaces for Object Storage ------//
2:
3: LPDIRECTDRAWSURFACE7 int_surf=NULL;
4: LPDIRECTDRAWSURFACE7 back1_surf=NULL;
5: LPDIRECTDRAWSURFACE7 back2_surf=NULL;
6: LPDIRECTDRAWSURFACE7 ground_surf=NULL;
7: LPDIRECTDRAWSURFACE7 light_surf=NULL;

And, of course, you will need to release these surfaces when you are finished by adding
the commands from Listing 5.7 to the Cleanup() function.

84 Hour 5

Variable Description

08 1634xCH05 11/13/99 11:08 AM Page 84

LISTING 5.7 Releasing the Image Surfaces

1: // release loaded image surfaces
2:
3: SafeRelease(back1_surf);
4: SafeRelease(back2_surf);
5: SafeRelease(int_surf);
6: SafeRelease(ground_surf);
7: SafeRelease(light_surf);
8: SafeRelease(taxi_surf);

Remember, you must always release surfaces before releasing interfaces on which they
are dependent—so be sure to add these commands prior to the release of either the pri-
mary surface or the DirectDraw interface.

Loading the Layers
Now that you have allocated image storage and a means to store specifications for each
layer, you are ready to load the images. Begin by creating a new version of the
load_images() function of the existing example.

You will begin by loading a user interface. This image will be drawn over the final
image, with a color keyed area that will act as a viewport through which the scene is
seen. The loading of the interface is shown in Listing 5.8.

LISTING 5.8 Loading the User Interface

1: BOOL load_images()
2: {
3: // load the interface image
4:
5: int_surf = bitmap_surface(“ntrface.bmp”);
6: if (!int_surf) {
7: ErrStr=Err_LoadImage;
8: return FALSE;
9: }

Next, load your first background layer, which contains a cloud image for the sky, and set
up a record for the rendering of this layer as shown in Listing 5.9.

LISTING 5.9 Loading the First Background Layer

1: // load the background image
2:
3: RECT rct;

Make It Move—DirectDraw Animation Techniques 85

5

continues

08 1634xCH05 11/13/99 11:08 AM Page 85

4: back1_surf=bitmap_surface(“back.bmp”,&rct);
5: if (!back1_surf) {
6: ErrStr=Err_LoadImage;
7: return FALSE;
8: }
9:
10: // set up layer record
11:
12: layers[0].surf=back1_surf;
13: layers[0].blit_flags=DDBLTFAST_WAIT;
14: layers[0].start_x=0;
15: layers[0].start_y=0;
16: layers[0].parallax=0.8;
17: layers[0].interval=layers[0].width=rct.right;
18: layers[0].height=rct.bottom;

Note that the parallax is set to 0.8—this layer will move slightly slower than the standard
rate your keyboard routine determines.

Now you are ready to load your additional layers, for the various layers of the city. The
code in Listing 5.10 provides for loading the additional layers, as well as loading the taxi
sprite, which you will integrate into the scene.

LISTING 5.10 Loading the Layers

1: // load the cityscape layer
2:
3: back2_surf=bitmap_surface(“back2.bmp”,&rct);
4: if (!back2_surf) {
5: ErrStr=Err_LoadImage;
6: return FALSE;
7: }
8:
9: // set up layer record
10:
11: layers[1].surf=back2_surf;
12: layers[1].blit_flags=DDBLTFAST_WAIT|DDBLTFAST_SRCCOLORKEY;
13: layers[1].start_x=0;
14: layers[1].start_y=45;
15: layers[1].parallax=1.4;
16: layers[1].interval=layers[1].width=rct.right;
17: layers[1].height=rct.bottom;
18:
19: // load the light layer
20:
21: light_surf=bitmap_surface(“light.bmp”,&rct);
22: if (!light_surf) {
23: ErrStr=Err_LoadImage;

86 Hour 5

LISTING 5.9 continued

08 1634xCH05 11/13/99 11:08 AM Page 86

24: return FALSE;
25: }
26:
27: // set up layer record
28:
29: layers[2].surf=light_surf;
30: layers[2].blit_flags=DDBLTFAST_WAIT|DDBLTFAST_SRCCOLORKEY;
31: layers[2].start_x=0;
32: layers[2].start_y=8;
33: layers[2].parallax=1.8;
34: layers[2].interval=600;
35: layers[2].width=rct.right;
36: layers[2].height=rct.bottom;
37:
38: // load the ground layer
39:
40: ground_surf=bitmap_surface(“ground.bmp”,&rct);
41: if (!ground_surf) {
42: ErrStr=Err_LoadImage;
43: return FALSE;
44:
45:
46: // set up layer record
47:
48: layers[3].surf=ground_surf;
49: layers[3].blit_flags=DDBLTFAST_WAIT;
50: layers[3].start_x=0;
51: layers[3].start_y=106;
52: layers[3].parallax=2.4;
53: layers[3].interval=layers[3].width=rct.right;
54: layers[3].height=rct.bottom;
55:
56: // load the sprite for the taxi
57:
58: taxi_surf=bitmap_surface(“taxi.bmp”,&rct);
59: if (!taxi_surf) {
60: ErrStr=Err_LoadImage;
61: return FALSE;
62: }
63:
64: // save taxi dimensions
65:
66: taxi_width=rct.right;
67: taxi_height=rct.bottom;

For these three layers, you have set successively higher parallax values, so they will move
faster and provide the appearance that each is closer to you than the previous layers.

You have also added an extra flag to your blit_flags field, which will be passed to the
BltFast() function when you draw the layers. This will cause DirectDraw to use the
color key you specified to perform source color keying. Note that the first layer does not

Make It Move—DirectDraw Animation Techniques 87

5

08 1634xCH05 11/13/99 11:08 AM Page 87

have a color key flag because it has nothing under it. The last layer also has no color key
because it is rectangular and will have no color keyed areas.

Speaking of color keys, you have not set one yet. Now that you have loaded all your
images, you will start off by finding the proper color for saturated green, which is the
key used in the sample images. The code for this is shown in Listing 5.11.

LISTING 5.11 Determining Color Key for Current Pixel Format

1: // get the pixel format
2:
3: DDPIXELFORMAT ddpf;
4: ddpf.dwSize=sizeof(ddpf);
5: lpDDSPrimary->GetPixelFormat(&ddpf);
6:
7: // Determine proper key for pixel format
8:
9: KeyColor = ddpf.dwGBitMask;

With this value in hand, create a DDCOLORKEY structure and use it to set the color key for
the interface and the foreground objects, using the SetColorKey() function. The code is
shown in Listing 5.12.

LISTING 5.12 Setting the Color Key

1: // set color keys
2:
3: DDCOLORKEY key;
4: key.dwColorSpaceLowValue = KeyColor;
5: key.dwColorSpaceHighValue = KeyColor;
6: int_surf->SetColorKey(DDCKEY_SRCBLT, &key);
7: back2_surf->SetColorKey(DDCKEY_SRCBLT, &key);
8: light_surf->SetColorKey(DDCKEY_SRCBLT, &key);
9: taxi_surf->SetColorKey(DDCKEY_SRCBLT, &key);

That concludes the setup of surfaces for the layers of your scene. Now the only thing
remaining is to rewrite the existing render_frame() function to draw the layers in the
proper order. Start off by looping through the layers, as shown in Listing 5.13.

LISTING 5.13 Beginning of the Frame Rendering Function

1: void render_frame()
2: {
3: RECT rct;
4:

88 Hour 5

08 1634xCH05 11/13/99 11:08 AM Page 88

5: // loop through the layers
6:
7: for (int i=0; i<NUM_LAYERS; i++) {

Now for the 3D magic! The keyboard routine keeps track of your scrolling position in
x_pos; however, the position of each layer is determined by the parallax factor for the
layer.

To determine the position for a layer, simply take your normal scrolling position and
multiply it by the parallax for the layer (see Listing 5.14).

LISTING 5.14 Calculating Parallax Based Position for a Layer

1: // calculate parallax position of layer
2:
3: int screen_pos = x_pos*layers[i].parallax;

Next, determine the position of the first instance of the object in the layer and loop
through the copies until you have found all the ones that are in the viewing area (see
Listing 5.15).

LISTING 5.15 Finding Objects That Are Onscreen

1: // set position of first object
2: int obj_pos=layers[i].start_x;
3: // loop until off right side of screen
4: while (obj_pos<screen_pos+640) {
5: // is this object on the screen?
6: if (obj_pos+layers[i].width>=screen_pos) {

For each object on the screen, Listing 5.16 will calculate its screen position and clip the
object to the screen if necessary, as you learned in Hour 4, “Creating the Game Loop.”

LISTING 5.16 Clipping to the Screen Rectangle

1: // yes, calculate the offset to the left edge of the screen
2:
3: int screen_x=obj_pos-screen_pos;
4:
5: // clip the object if necessary
6:
7: rct.left=0;
8: rct.top=0;

Make It Move—DirectDraw Animation Techniques 89

5

continues

08 1634xCH05 11/13/99 11:08 AM Page 89

9: rct.right=layers[i].width;
10: rct.bottom=layers[i].height;
11: if (screen_x<0) {
12: rct.left-=screen_x;
13: screen_x=0;
14: } else if (screen_x+rct.right>640) {
15: rct.right=640-screen_x;
16: }

Finally, you are ready to render the object to the screen. You will use the blit_flags
member of the layer record to set the flags for BltFast(), setting the flag for color key-
ing on those layers that need it (see Listing 5.17).

LISTING 5.17 Blitting to the Screen

1: // draw the object to the screen
2:
3: lpDDSBack -> BltFast(screen_x,layers[i].start_y,

➥layers[i].surf,
4: &rct,layers[i].blit_flags);
5: }
6:
7: // increment to next object position
8:
9: obj_pos+=layers[i].interval;
10: }
11: }

After you have drawn all the layers, you are ready to handle your taxi sprite. We have
saved it for last because it is the closest object in the scene. The taxi will travel from
right to left across the scene and loop back around to the right of the scene when it goes
off the edge of the scene. Listing 5.18 shows you how to do this.

LISTING 5.18 Moving and Displaying the Taxi Sprite

1: // calculate screen position for taxi parallax
2:
3: screen_pos=x_pos*3.0;
4:
5: // is the taxi on the screen?
6:
7: if (taxi_pos+taxi_width > screen_pos&&taxi_pos<screen_pos+640) {
8:

90 Hour 5

LISTING 5.16 continued

08 1634xCH05 11/13/99 11:08 AM Page 90

9: // yes, calculate the offset to the left edge of the screen
10:
11: int screen_x=taxi_pos-screen_pos;
12:
13: // clip the object if necessary
14:
15: rct.left=0;
16: rct.top=0;
17: rct.right=taxi_width;
18: rct.bottom=taxi_height;
19: if (screen_x<0) {
20: rct.left-=screen_x;
21: screen_x=0;
22: } else if (screen_x+rct.right>640) {
23: rct.right=640-screen_x;
24: }
25:
26: // draw the object to the screen
27:
28: lpDDSBack->BltFast(screen_x,220,taxi_surf,&rct,

➥DDBLTFAST_WAIT|DDBLTFAST_SRCCOLORKEY);
29: }
30:

Now you are ready to apply the interface, blitting with a source color key so that the
drawn scene shows through. Finally, flip the back buffer to the front, showing the com-
pleted image. The code shown in Listing 5.19 provides the finishing touches on this
exercise.

LISTING 5.19 Displaying the Interface

1: // blit the interface to the back buffer with color key
2:
3: rct.left=0;
4: rct.top=0;
5: rct.right=640;
6: rct.bottom=480;
7: lpDDSBack -> BltFast (0,0,int_surf,&rct,DDBLTFAST_WAIT
8: |DDBLTFAST_SRCCOLORKEY);
9: // flip to the primary surface
10:
11: lpDDSPrimary->Flip(0,DDFLIP_WAIT);
12: }

That completes the rendering of your scene. This technique, known in the gaming engine
as side scrolling, provides a good illusion of 3D without the cost of creating a 3D world
and rendering engine. A sample of the final scene is shown in Figure 5.5.

Make It Move—DirectDraw Animation Techniques 91

5

08 1634xCH05 11/13/99 11:08 AM Page 91

Summary
In this hour, you learned what color keys are and how to use them, including choosing a
key color, converting that key, and setting the color key in DirectDraw. You also learned
about depth in 3D by using Z-Order and how to load different layers in a parallax envi-
ronment.

Q&A
Q What are the practical limitations of color keyed scenes, such as the one

demonstrated in this hour? How complex can they be?

A If such scenes are properly optimized, they can easily reach seven or eight layers in
depth. The biggest loss of performance is from what is known as overdraw.
Overdraw is a measurement of how many times a given pixel is drawn in a single
frame. In commercial games, regions of overlapping objects are often determined
before rendering, and background objects that are obscured are not drawn.

Q With the increasing popularity of 3D games, is there still a market for 2D
games based on this kind of technology?

A Yes, there will still be for some time. Although this style of game will require an
increased quality in both media and game play to compete, they are far less
demanding in their system requirements and thus reach a broader market.

92 Hour 5

FIGURE 5.5
The composition of the
final scene.

08 1634xCH05 11/13/99 11:08 AM Page 92

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. What are the two most common 16-bit pixel formats?

a. 5,5,5 5,5,6

b. 6,5,6 5,6,5

c. 5,6,5 5,5,5

2. What are the two types of color keying?

3. Which function is used to set the color of a surface in DirectDraw?

4. Using Z-Ordering, the first image drawn is

a. in the foreground

b. in the background

5. True or false: During cleanup you should release DirectDraw surfaces before
releasing DirectDraw object interfaces.

Exercises
1. Change the values for each parallax layer by increasing or decreasing its value. See

how it affects the effect of 3D.

2. Add an additional layer or two and adjust the parallax speeds according to their
depth.

Make It Move—DirectDraw Animation Techniques 93

5

08 1634xCH05 11/13/99 11:08 AM Page 93

08 1634xCH05 11/13/99 11:08 AM Page 94

Hour
6 DirectSound—Adding Ambience and

Sound Effects to Your Game

7 Applying DirectSound

PART III
Adding Music and Sound

09 1634xPart III 11/13/99 10:47 AM Page 95

09 1634xPart III 11/13/99 10:47 AM Page 96

HOUR 6
DirectSound—Adding
Ambience and Sound
Effects to Your Game

DirectSound is the audio portion of DirectX that supports high-performance
audio mixing and playback. Using DirectSound, you can create games with
very rich sound effects that help add excitement and realism. The main ben-
efit to using DirectSound is the ability to get close to the sound hardware.
More specifically, DirectSound automatically uses hardware acceleration if
it detects that the sound hardware supports it.

This hour introduces you to DirectSound and lays the groundwork for using
DirectSound to play sound effects in games. You will learn about the archi-
tecture of DirectSound along with some specifics regarding how certain
DirectSound objects are used.

In this hour, you will learn

� The benefits of using DirectSound
� The main objects used in DirectSound

10 1634xCH06 11/13/99 11:23 AM Page 97

� The relationship between primary and secondary sound buffers
� How to alter the volume, panning, and frequency of a sound buffer
� The difference between static and streaming sound buffers

DirectSound Basics
DirectSound is the sound component of DirectX, and it provides support for efficient
wave mixing, direct access to sound hardware, and the capability of utilizing 3D audio.
You can think of DirectSound as an audio buffer manager. The primary design goal
behind DirectSound is to provide an efficient, device-independent interface to sound
hardware that can use hardware acceleration. DirectSound pulls off this feat by providing
default software functionality that is superceded by hardware functionality if the hard-
ware is available. This open-ended design allows DirectSound to take advantage of new
audio features as sound hardware evolves.

DirectSound accesses the sound hardware through the DirectSound HAL (Hardware
Abstraction Layer). The HAL is a layer of software implemented by the DirectSound
device driver that provides a uniform interface to the sound hardware. The HAL is
implemented as an extension to the standard audio device driver. This means that a
DirectSound driver is really just a Windows device driver with HAL extensions.

98 Hour 6

Don’t let all this HAL talk get you to thinking that you need to understand
how to program low-level device drivers to use DirectSound. DirectSound’s
driver model is actually very similar to the DirectDraw driver model. And
similar to DirectDraw, it isn’t imperative that you understand the inner
workings of a device driver to develop DirectX applications.

The DirectSound HAL provides the following functionality:

� It describes the capabilities of the sound hardware
� It acquires and releases control of the sound hardware
� It performs an operation when the sound hardware is available
� It fails an operation when the sound hardware is unavailable

Although it’s important to have a general understanding of how DirectSound communi-
cates with the sound hardware, it’s much more important to understand exactly what
DirectSound can do for you at the application level. The next few sections uncover some
of the main benefits of using DirectSound.

10 1634xCH06 11/13/99 11:23 AM Page 98

Low-Latency Audio Mixing
The most important feature of DirectSound is low-latency audio mixing. Latency
is the delay between when a sound is played programmatically and when the

user actually hears it. Low-latency means that this delay is very small, which is a good
thing. Ideally, the latency would be so small that the user doesn’t notice any delay.
DirectSound is supposed to have no more than a 20 millisecond latency, which is
practically instantaneous, at least in terms of human perception.

Low-latency mixing is extremely important to games and other high-performance
multimedia applications because you will often want to play a sound in conjunction
with a graphical animation of some sort. Suppose, for example, that you’re developing
a game and you want to play an explosion sound to go along with an animated explosion
visual effect. You don’t want the boom to come a half second after the smoke clears;
you want it to come right as the explosion animation starts. DirectSound offers suitable
performance to alleviate this type of problem.

DirectSound isn’t perfect when it comes to low-latency mixing, however. If the user
doesn’t have a suitable DirectSound driver, DirectSound has to rely on HAL emulation,
which results in a higher latency. This means that if the user doesn’t have a DirectSound
driver, there will more than likely be noticeable latency delays. Fortunately, most
Windows 98 sound card drivers support DirectSound, so this is rarely an issue.

Hardware Acceleration
Another major feature of DirectSound is its capability of taking advantage of hardware
acceleration. DirectSound is designed to carry out all of its functionality in software, but
it always attempts to use hardware acceleration whenever possible. This means that the
actual mixing of sound buffers takes place in hardware sound buffer memory, as opposed
to being handled in software. Because hardware is inherently faster than software, any
functions that can be performed in hardware improve performance.

The really nice thing about DirectSound’s hardware acceleration feature is that it is com-
pletely automatic. You don’t have to write any special code to detect hardware and enable
hardware acceleration; DirectSound takes on all the responsibility of querying the hard-
ware and using hardware acceleration if it is available. Just in case you don’t see the
significance of this, let me assure you that this is a huge benefit for developers. By
simply developing your application to use DirectSound, you can boast that it fully
supports hardware acceleration.

DirectSound—Adding Ambience and Sound Effects to Your Game 99

6

NEW TERM

10 1634xCH06 11/13/99 11:23 AM Page 99

3D Audio
When I first heard people talking about 3D audio a few years back, I thought that it was
just a gimmick. How could you possibly give the effect of 3D audio with a couple of
speakers? Well, the idea behind 3D audio doesn’t have as much to do with the speakers
as it does with the context of a game or multimedia application. 3D audio has to do with
assigning a spatial position to a piece of audio so that its playback attributes (volume,
panning, frequency, and so on) can be altered accordingly. Typically this involves
altering these attributes based on the position of the audio with respect to a player’s
character in a game. If an explosion occurs to your right, the sound should primarily
come from the right speaker.

DirectSound 3D adds a spatial dimension to audio by taking into account the subtleties
of human audio perception. The most obvious spatial audio cue is volume, which varies
based on how close a sound is to the listener. Another more subtle cue is the slightly
muffled effect a sound has when heard from behind. DirectSound 3D takes these cues
into account to make the user of an application or game feel as if sounds are coming
from different locations.

DirectSound and Windows Waves
DirectSound supports all the standard Windows wave formats. Not only does it sup-
port using all the formats, but it also enables you to mix waves in any of the formats,
handling appropriate conversions automatically. Even so, it is smarter and more efficient
to try and keep all your waves in the same format so that DirectSound has to do as little
conversion as possible. DirectSound supports all combinations of the following wave
formats:

� 8- or 16-bit sample data width
� 11kHz, 22kHz, or 44kHz sample rate
� mono or stereo

Inside DirectSound
Now that you have an idea as to the benefits of using DirectSound, take a look inside
DirectSound to see how it is structured. DirectSound is implemented as a set of COM
objects for representing both physical sound devices and sound data buffers. You might
not ever need all the objects, but it still helps to know what they are. Following are the
DirectSound objects involved in the playback of audio:

� DirectSound—represents a physical hardware sound device
� DirectSoundBuffer—represents a stream of audio data

100 Hour 6

10 1634xCH06 11/13/99 11:23 AM Page 100

� DirectSound3DBuffer—represents a stream of audio data positioned in 3D space
� DirectSound3Dlistener—represents an audio listener positioned in 3D space
� DirectSoundNotify—provides a mechanism for notifying an application of

DirectSound events

To keep things relatively simple, I’m going to stick with 2D audio in this lesson and
show how to mix 2D audio clips using DirectSound. To play 2D audio, you really only
need to use the DirectSound and DirectSoundBuffer objects. So, I will focus on these
two objects and you will learn more about their role in DirectSound.

The DirectSound Object
The DirectSound object is a software representation of a physical audio hardware device
(a sound card). Because most computers have only one sound card, you will typically be
using only one DirectSound object. This means that multiple applications that use
DirectSound will have to share the DirectSound object because they all use the same
physical audio hardware. Fortunately, DirectSound automatically tracks the input focus
of each application and produces sound only for the application with input focus. In
other words, you don’t have to worry about sharing the DirectSound object.

You create a DirectSound object by calling the global DirectSoundCreate() function,
which returns a pointer to an IDirectSound interface:

HRESULT WINAPI DirectSoundCreate(LPGUID lpGuid, LPDIRECTSOUND * ppDS,
➥LPUNKNOWN pUnkOuter);

The first parameter to DirectSoundCreate(), lpGUID, is a global identifier for the audio
device that the DirectSound object represents. This identifier can be determined from
calling DirectSoundEnumerate(), or it can be set to NULL. In the latter case, DirectSound
uses the default Windows sound device. The second parameter, ppDS, is a pointer to a
DirectSound object pointer. This parameter is set to the DirectSound object pointer after
successful creation, and it serves as the basis for performing future DirectSound opera-
tions. The final parameter to DirectSoundCreate() is pUnkOuter, which might be used to
support aggregation in a future release of DirectSound, but for now must be set to NULL. If
the DirectSound object is successfully created, DirectSoundCreate() will return DS_OK.

I mentioned that you could call the DirectSoundEnumerate() function to determine an
audio device identifier. Following is the prototype for this function:

HRESULT WINAPI DirectSoundEnumerate(LPDSENUMCALLBACK lpDSEnumCallback,
➥LPVOID lpContext);

You must use DirectSoundEnumerate() only if you’re concerned that multiple audio
devices might be available. DirectSoundEnumerate() will return a list of these devices,

DirectSound—Adding Ambience and Sound Effects to Your Game 101

6

10 1634xCH06 11/13/99 11:23 AM Page 101

from which you can choose one. You provide DirectSoundEnumerate() with a
callback function in the first parameter, which is called by DirectSound and provided
with information about each available sound device. You can also provide additional
information of your own to the callback function by using the second parameter to
DirectSoundEnumerate(). Because the default sound device is suitable in most cases,
I won’t spend any more time on the DirectSoundEnumerate() function. Just understand
that if you want to support a system with eleven sound cards, you certainly have the
flexibility to do so!

After successfully creating a DirectSound object, you’re ready to get to work
manipulating it. DirectSound objects are manipulated through the IDirectSound COM
interface. The IDirectSound interface methods are used to get and set DirectSound
object attributes, as well as to create DirectSoundBuffer objects. Following are the
methods defined in the IDirectSound interface, some of which you will use in the next
lesson when you add DirectSound support to an application:

� Initialize()

� SetCooperativeLevel()

� CreateSoundBuffer()

� DuplicateSoundBuffer()

� GetCaps()

� Compact()

� GetSpeakerConfig()

� SetSpeakerConfig()

� AddRef()

� QueryInterface()

� Release()

Creating a Sound Buffer
The CreateSoundBuffer() method is used to create sound buffers, which are actually
DirectSoundBuffer objects. Following is the prototype for this function:

HRESULT CreateSoundBuffer(LPCDSBUFFERDESC lpcDSBufferDesc,
LPLPDIRECTSOUNDBUFFER lplpDirectSoundBuffer, IUnknown FAR * pUnkOuter);

You will typically use the CreateSoundBuffer() method to create secondary sound
buffers to represent different sounds in a game. The first parameter, lpcDSBufferDesc, is
a pointer to a DSBUFFERDESC structure. This structure contains a description of the sound
buffer to be created, including the size of the buffer, among other things:

102 Hour 6

10 1634xCH06 11/13/99 11:23 AM Page 102

typedef struct {
DWORD dwSize;
DWORD dwFlags;
DWORD dwBufferBytes;
DWORD dwReserved;
LPWAVEFORMATEX lpwfxFormat;

} DSBUFFERDESC, *LPDSBUFFERDESC;
typedef const DSBUFFERDESC *LPCDSBUFFERDESC;

You will learn how to create and fill-in the details of a DSBUFFERDESC structure in the
next hour. Getting back to the CreateSoundBuffer() method, the second parameter,
lplpDirectSoundBuffer, points to a location to store a pointer to the newly created
DirectSoundBuffer object. This is the pointer you will use to manipulate the sound
buffer. The last parameter to CreateSoundBuffer(), pUnkOuter, might be used to
support aggregation in a future release of DirectSound, but for now must be set to NULL.

Getting Device Capabilities
Sometimes it is useful to query the sound hardware for its device capabilities to see what
you have to work with. The GetCaps() method performs this task:

HRESULT GetCaps(LPDSCAPS lpDSCaps);

The only parameter to GetCaps() is a pointer to a structure that is filled in with details
regarding the sound hardware. The DSCAPS structure contains a wide variety of fields
with detailed device information about the sound hardware. You should refer to the
DirectSound documentation for more information about the specifics of this structure.

Releasing DirectSound
When you’re finished using a DirectSound object, you must make sure to free it, so it
releases the sound hardware and any other resources that it has tied up. You do this by
calling the Release() method, which takes no parameters:

ULONG Release();

A call to Release() actually results in the reference count of the DirectSound object
being adjusted. Not surprisingly, the reference count on a COM object keeps up with
how many times the object is being referenced. When the reference count reaches 0, the
DirectSound object is automatically freed. When a DirectSound object is finally freed,
all the DirectSoundBuffer objects created for it are released as well. In other words,
releasing a DirectSound object results in all associated DirectSoundBuffer objects
being released too.

Setting the Cooperative Level
The last method of interest in the IDirectSound interface is SetCooperativeLevel(),
which must be called on a DirectSound object before any sound buffers can be played.

DirectSound—Adding Ambience and Sound Effects to Your Game 103

6

10 1634xCH06 11/13/99 11:23 AM Page 103

SetCooperativeLevel() establishes the cooperative (priority) level for the sound device
represented by the DirectSound object. There are four priority levels, listed in order of
increasing priority:

� Normal
� Priority
� Exclusive
� Write-primary

The normal priority level has the lowest priority, whereas write-primary has the highest
priority. You must use the write-primary priority level to write directly to the primary
sound buffer; this is something that you will rarely need to do.

The SetCooperativeLevel() method is defined as follows:

HRESULT SetCooperativeLevel(HWND hwnd, DWORD dwLevel);

The first parameter, hwnd, is the handle of the application’s main window. The second
parameter, dwLevel, is a flag that indicates the desired priority level. The DSSCL_NORMAL
flag represents the normal priority level and is recommended in most situations. Because
the DSSCL_NORMAL flag specifies the lowest priority level, it provides the safest sharing of
sound resources with other applications. You should use DSSCL_NORMAL unless you have a
compelling reason for using a higher priority level.

The DirectSoundBuffer Object
The DirectSoundBuffer object represents a stream of wave audio, and comes in two
forms: the primary sound buffer and secondary sound buffers. The primary sound buffer
represents the audio buffer being played on the physical audio device. Secondary sound
buffers represent individual audio streams that are mixed into the primary buffer for out-
put. Figure 6.1 shows the relationship between the primary and secondary buffers.

104 Hour 6

FIGURE 6.1
The relationship
between the primary
and secondary sound
buffers.

Secondary
Buffer

Secondary
Buffer

Secondary
Buffer

Primary
Buffer

Audio
Hardware

Speaker

10 1634xCH06 11/13/99 11:23 AM Page 104

Figure 6.1 shows how the primary sound buffer represents the output of the DirectSound
object and effectively serves as the result of mixing secondary buffers together. Secon-
dary sound buffers are equivalent to the inputs on an audio mixer, except that in
DirectSound there are no limits to the number of secondary sound buffers. Each sec-
ondary sound buffer is capable of being mixed with any other secondary buffer, with the
resulting sound residing in the primary buffer for output.

Practically speaking, secondary sound buffers are used to represent each discrete sound
in a game or multimedia application. You can create and mix as many secondary buffers
as you need within a given application.

DirectSoundBuffer objects are manipulated through the IDirectSoundBuffer COM
interface. You create DirectSoundBuffer objects by calling the CreateSoundBuffer()
method on the DirectSound object, which returns a pointer to an IDirectSoundBuffer
interface. The IDirectSoundBuffer interface methods are used to get and set
DirectSoundBuffer object attributes, as well as to write audio data and play the sound
buffers. Following are the methods defined in the IDirectSoundBuffer interface:

� GetCaps()

� GetFormat()

� SetFormat()

� GetStatus()

� Initialize()

� Restore()

� GetCurrentPosition()

� SetCurrentPosition()

� Lock()

� Unlock()

� Play()

� Stop()

� GetFrequency()

� SetFrequency()

� GetPan()

� SetPan()

� GetVolume()

� SetVolume()

DirectSound—Adding Ambience and Sound Effects to Your Game 105

6

10 1634xCH06 11/13/99 11:23 AM Page 105

� AddRef()

� QueryInterface()

� Release()

You’ll be using several of these methods in the next hour to add DirectSound functionality
to an existing application. The next few sections highlight these functions and how they
work.

Locking and Unlocking a Sound Buffer
A sound buffer is really just a chunk of memory containing sound data. Before you can
play a sound buffer, you must first write sound data to it. You do so by locking the buffer
and obtaining a pointer to the buffer memory. The Lock() method is used to lock a sound
buffer:

HRESULT Lock(DWORD dwWriteCursor, DWORD dwWriteBytes, LPVOID lplpvAudioPtr1,
➥LPDWORD lpdwAudioBytes1, LPVOID lplpvAudioPtr2, LPDWORD lpdwAudioBytes2,
➥DWORD dwFlags);

The first parameter, dwWritePosition, specifies a position, relative to the start of the
buffer, where the buffer is to be locked. The second parameter, dwWriteBytes, specifies
how many bytes are to be locked for writing, starting at dwWritePosition. The third para-
meter, lplpvAudioPtr1, points to a value that will contain a pointer to the first block of
writable audio data. The lpdwAudioBytes1 parameter points to a DWORD that will be filled
with the number of bytes that can actually be written. If lpdwAudioBytes1 is equal to
dwWriteBytes, then lpdwAudioBytes1 points to the entire requested block of data. If not,
then the fifth parameter, lplpvAudioPtr2, points to a second block of audio data. The
lpdwAudioBytes2 parameter points to a DWORD, which will be filled with the number of
bytes that can actually be written to the second block. The last parameter to Lock(),
dwFlags, specifies the buffer lock flags, which can be either DSBLOCK_FROMWRITECURSOR
or DSBLOCK_ENTIREBUFFER. The former flag locks the buffer from the current position at
which it is safe to write new data (the write cursor)—usually about ten milliseconds ahead
of the play cursor. You can use the latter flag if you want to write to the entire buffer.

play cursor: the position in a sound buffer at which the data is being played.

write cursor: the position in a sound buffer at which it is safe to write new data;
usually about ten milliseconds ahead of the play cursor.

You’re probably thinking that the Lock() function is unnecessarily confusing—I know I
did when I first worked with DirectSound. The big question is why do you need two
memory blocks? This is necessary because sound buffers are circular, which means that
if you read or write past the end of a buffer, you will wrap around and continue from the

106 Hour 6

NEW TERM

NEW TERM

10 1634xCH06 11/13/99 11:23 AM Page 106

beginning. Figures 6.2 and 6.3 reveal the circular nature of sound buffers by visually
showing two approaches to a 2KB lock within a 3KB buffer.

DirectSound—Adding Ambience and Sound Effects to Your Game 107

6

Locked Data

Pointer 2 = NULLPointer 1

1 KB 2 KB0 KB 3 KB

Unlocked DataFIGURE 6.2
A 2KB lock performed
from the beginning of
a 3KB sound buffer.

Unlocked Data

Pointer 2

1 KB 2 KB0 KB 3 KB

Locked Data

Pointer 1

Locked DataFIGURE 6.3
A 2KB lock performed
at 2KB into a
3KB sound buffer,
resulting in a circular
wraparound.

In Figure 6.3, the buffer data is circular because there isn’t room to write 2KB of
data when there is only 1KB left until the end of the buffer. So, the remaining 1KB
is wrapped around to the beginning of the buffer. Two data pointers are necessary to
account for the wraparound. Although this is a nice feature, in most cases you will lock
the entire buffer, which means that you’ll only use the first data pointer passed to the
Lock() method.

It’s very important not to leave buffers locked for long periods of time. This is because of
the fact that you might be playing a buffer as you are writing to it, and keeping the buffer
locked for too long might result in the play cursor catching up with the locked data. This
can result in random noise, which is a bad thing. You call the Unlock() method to unlock
a sound buffer:

HRESULT Unlock(LPVOID lpvAudioPtr1, DWORD dwAudioBytes1, LPVOID lpvAudioPtr2,
➥DWORD dwAudioBytes2);

As you can see, the Unlock() function takes four of the same parameters that you passed
into Lock(). This allows it to properly free the memory that was locked down.

10 1634xCH06 11/13/99 11:23 AM Page 107

Playing and Stopping a Sound Buffer
The Play() method is used to play sound buffers. Playing a buffer actually means that
the buffer is mixed into the primary buffer, which is then output to the sound device. If
Play() is called on a buffer that is already playing, the call succeeds without interrupting
play. Following is the prototype for the Play() function:

HRESULT Play(DWORD dwReserved1, DWORD dwReserved2, DWORD dwFlags);

The first two parameters to Play() are reserved and must be passed as 0. The last para-
meter is a flag that specifies how the buffer is to be played. The only flag defined in
DirectSound is DSBPLAY_LOOPING, which indicates that the buffer is to continue playing
over and over until it is explicitly stopped. You pass 0 to indicate that the buffer is to only
be played once.

To stop playing a sound buffer, you call the Stop() method. Stop() is most commonly
used to stop the play of looping sound buffers, which don’t stop playing on their own.
Following is the prototype for the Stop() function:

HRESULT Stop();

There isn’t too much more to say about Stop(); just call it on a buffer to stop it.

Getting Sound Buffer Status
You can obtain information about the status of a sound buffer by calling the GetStatus()
method:

HRESULT GetStatus(LPDWORD lpdwStatus);

The only parameter to GetStatus() is a pointer to a DWORD, lpdwStatus, which is where
the resulting buffer status is stored. The status of the buffer consists of whether the buffer
is currently playing, whether it is looping, and whether the buffer has been lost. Of
course, a buffer must be playing for it to be looping. The three corresponding status flags
are DSBSTATUS_PLAYING, DSBSTATUS_LOOPING, and DSBSTATUS_BUFFERLOST.

In the event of a buffer being lost, as indicated by the DSBSTATUS_BUFFERLOST flag, you
must call the Restore() method and then reinitialize the sound buffer data. You learn
how to do this in the next hour when you put DirectSound to work.

Setting Sound Buffer Volume
You get and set the volume of a DirectSoundBuffer object by calling the GetVolume()

and SetVolume() methods:

HRESULT GetVolume(LPLONG lplVolume);
HRESULT SetVolume(LONG lVolume);

108 Hour 6

10 1634xCH06 11/13/99 11:23 AM Page 108

Volume is measured in hundredths of decibels (dB), which results in possible values
ranging from –10,000 to 10,000. Negative volumes attenuate a sound whereas positive
volumes amplify a sound; a volume of zero results in a sound being played at its
recorded level.

Controlling Sound Buffer Panning
To get and set the panning of a DirectSoundBuffer object, you must call the GetPan()
and SetPan() methods:

HRESULT GetPan(LPLONG lplPan);
HRESULT SetPan(LONG lPan);

The panning of a sound buffer determines how the sound is played with respect to the
left and right speakers. Panning is expressed in hundredths of decibels (dB), which deter-
mines how much a channel is attenuated. Panning values range from –10,000 to 10,000,
with negative values attenuating the right channel and positive values attenuating the left
channel; a panning value of zero results in both channels at full volume. It’s important to
note that panning is applied in addition to volume settings.

Altering Sound Buffer Frequency
You get and set the frequency of a DirectSoundBuffer object by calling the
GetFrequency() and SetFrequency() methods:

HRESULT GetFrequency(LPDWORD lpdwFrequency);
HRESULT SetFrequency(DWORD dwFrequency);

Frequency is measured in Hertz (Hz), with possible values ranging from 100 to 100,000.
Keep in mind that sounds are typically recorded at 11,250Hz (11kHz), 22,500Hz
(22kHz), or 44,100Hz (44kHz). So, you can effectively slow down a 22kHz sound by
setting its frequency to 15,000Hz, for example.

Static and Streaming Sound Buffers
It’s worth pointing out that the DirectSoundBuffer object supports both static and
streaming sound buffers. A static sound buffer is a buffer that contains an entire

sound in memory, whereas a streaming sound buffer usually contains only part of a sound
and requires the application to write new data to the sound buffer as the buffer is being
played. Static buffers are more efficient because DirectSound will store them directly in
the memory of a hardware audio device if possible. If a static buffer can be stored in the
hardware audio device’s memory, the sound hardware takes on the task of mixing the
audio, which is much faster than leaving it up to the system CPU. It is also possible to
use hardware mixing with streaming sound buffers providing that the system data bus is
fast enough to transfer the stream of data to the audio hardware as it is delivered.

DirectSound—Adding Ambience and Sound Effects to Your Game 109

6NEW TERM

10 1634xCH06 11/13/99 11:23 AM Page 109

Unless you are building an application that pulls audio from the Internet, you will more
than likely want to use static sound buffers because they are more efficient. It is impor-
tant to point out that audio hardware memory is limited, which means that there might
not be enough room for it to hold all the static sound buffers you are using. Therefore,
you should prioritize sound buffers so that the most commonly played buffers have the
best chance of being stored directly in audio hardware memory. You do this by simply
creating and initializing the most commonly played sound buffers first.

Summary
In this hour, you became acquainted with DirectSound, the high-performance audio
portion of DirectX. You began the lesson by learning some basics about DirectSound,
including the major benefits it offers. You then took a look inside the DirectSound API,
exploring the DirectSound architecture and learning some details about DirectSound
COM objects along the way. You focused on the DirectSound and DirectSoundBuffer
objects, which are the most commonly used objects for playing 2D sound.

The next hour shows you how to apply what you learned today. More specifically, you
use the DirectSound and DirectSoundBuffer objects to add some interesting sound
effects to the cityscape application from the previous hour.

Q&A
Q I understand that a 44kHz sampling rate results in a better quality sound than

22kHz and that 16-bit audio is better quality than 8-bit. Why is this so?

A Because the sampling rate determines how many discrete samples are taken per
second, a higher sampling rate results in more samples being taken. This in turn
results in higher sampled sound quality because you’re obtaining more information
about the physical sound. The same applies to the data width of the sample, which
can be 8- or 16-bit. 16 bits provide more discrete amplitude levels than 8 bits, and
ultimately make the sampled sound more closely match the physical sound.

Q If a DirectSound object can be shared among multiple applications, how does
it know when to produce sound for a given application?

A The DirectSound object automatically tracks the input focus, which is always set
to the currently active window. The DirectSound object only produces sound for
the application with the input focus. So, when an application loses the input focus,
all audio being played through DirectSound is muted. This helps to ensure that two
applications can’t play sounds on top of each other.

110 Hour 6

10 1634xCH06 11/13/99 11:23 AM Page 110

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. What is the purpose of the DirectSound HAL?

2. How is the DirectSound HAL implemented?

3. What is the most important feature of DirectSound?

4. To what does the term latency refer?

5. What happens if the user doesn’t have a DirectSound driver?

6. What DirectSound COM object represents a physical hardware sound device?

7. How do you initially create a DirectSound object?

8. What priority level provides the safest sharing of sound resources with other
applications?

9. What happens to any associated DirectSoundBuffer objects when a DirectSound
object is released?

10. What happens to the playback of a sound if you set the panning value to 10,000?

Exercises
1. Take some time to get acquainted with the DirectSound documentation, which

ships with DirectX. You’ll find a handy DirectSound API reference, along with
additional information about the architecture and usefulness of DirectSound.

2. Try your hand at recording some sound effects of your own using sound editing
software. You can either use the Sound Recorder application that ships with
Windows, or try a third-party sound editing application. Most third-party applica-
tions provide lots of extra features for manipulating sounds. Be sure to take note of
the format in which you store the sounds.

DirectSound—Adding Ambience and Sound Effects to Your Game 111

6

10 1634xCH06 11/13/99 11:23 AM Page 111

10 1634xCH06 11/13/99 11:23 AM Page 112

HOUR 7
Applying DirectSound

You learned in the previous hour that DirectSound provides support for
playing mixed audio with very low latency. This hour continues with the
examination of DirectSound by showing you how to use DirectSound in the
context of a real application. More specifically, you build upon the cityscape
application from Hour 5, “Make It Move—DirectDraw Animation
Techniques,” and add some interesting sound effects.

In addition to learning the practical ins and outs of playing sounds using
DirectSound, this hour also shows you how to control the properties of
sounds. You learn how to control the volume and frequency of individual
sounds, as well as the panning between left and right speakers.

In this hour, you will learn

• How waves fit into the DirectSound equation

• How to load and extract information from waves

• How to initialize and play mixed audio using DirectSound

• How to alter the volume, frequency, and panning of DirectSound buffers

11 1634xCH07 11/13/99 11:02 AM Page 113

DirectSound and Games
It helps to understand how sounds are used in games and multimedia applications before
jumping into the details of a real DirectSound application. Wave sounds are typically
used in games to represent sound effects and speech. These sounds are usually played in
response to some event in the game, such as a bomb exploding or a character talking.
Generally speaking, you don’t need to concern yourself with whether you are playing
multiple sounds at once. DirectSound automatically handles the mixing of sounds even
though you play them independently of each other programmatically.

A DirectSoundBuffer object represents each sound in a game. You create each of these
sound objects after creating the main DirectSound object. Keep in mind that this doesn’t
include interactive music, which is handled completely differently in DirectX. You will
learn how to use DirectMusic to generate interactive music in the next two hours.

It’s handy to place a group of sounds in an array of DirectSoundBuffer objects that is
initialized at the start of the game by locking, writing sound data, and then unlocking the
sounds. You will likely have the sounds stored as waves; in which case, you need to
extract the raw sound data from wave files stored on disk or wave resources stored in the
executable application or a DLL. When the sound buffers are initialized, you are free to
play any of the sounds at any time.

It is important to structure your sounds so that they are either static or streaming, based
upon their size and usage. Static buffers should be used for frequently played sounds
(preferably short) that you want mixed in hardware. The order in which you create
sounds affects their accessibility to hardware mixing. The first sounds that you create
have a better chance of being mixed in hardware because a limited amount of memory is
available on sound devices. For this reason, you should prioritize your sounds so that
short, frequently used sounds are created and initialized first. Streaming buffers are less
efficient and are often used to store partial sounds.

Some games have lots of levels with sounds that vary from level to level. Because you
don’t want to have too many sounds loaded at once, it makes sense to have an array of
sounds and rewrite the buffer data at each level change. In this scenario, you would have
all your sounds divided among different levels, and then load a sound into a buffer only if
the player is on the level where the sound is used. You would initialize the sound array at
the start of each new level. You could then have a separate sound buffer array that holds
common sounds across all levels, such as sounds for footsteps, gunfire, and explosions.

This brief description of a DirectSound usage scenario should be a good start for you to
develop a sound model for your own games. Later in the hour, you put these ideas to the
test by adding sound support to the cityscape application from Hour 5.

114 Hour 7

11 1634xCH07 11/13/99 11:02 AM Page 114

Working with Waves
Waves serve as the basis for sounds that are played using DirectSound. The most popular
digital sound format used in Windows is the wave format, which is denoted by the .wav
file extension. Windows .wav files are actually RIFF files, which stands for Resource
Interchange File Format. The RIFF format serves as the basis for many of the Windows
media file formats.

From the perspective of a multimedia application, waves are just another type of
resource, like bitmaps and icons. This means that you can include waves as resources in
the resource script for an application.

Applying DirectSound 115

7

You can create your own waves using the Sound Recorder application that
ships with Windows. Although Sound Recorder is primitive compared to
commercial wave editors, it gets the job done. If you have a microphone
connected to your sound card, you can record just about anything you want.
You can also record audio directly from an audio CD in your CD-ROM drive.

A High-Level Use for Waves
Before getting into the details of how waves are used with DirectSound, it’s worth
pointing out that the Win32 API includes a function that can be called to play waves:
PlaySound(). Following is the prototype for the PlaySound() function:

BOOL PlaySound(LPCSTR pszSound, HMODULE hmod, DWORD fdwSound);

The first parameter to the PlaySound() function, pszSound, is the name of the wave
audio clip, which can be the name of a wave file, the name of a wave resource, or a
pointer to a wave image in memory. In the case of playing a wave resource, the second
parameter, hmod, is the module instance handle where the resource is located. Otherwise,
you can pass NULL as this parameter. The last parameter, fdwSound, specifies flags that
determine how the sound is played. Table 7.1 lists the flags supported by the
PlaySound() function, along with their usage.

TABLE 7.1 Flags Supported by the PlaySound() Win32 API Function

Flag Description

SND_FILENAME Specifies that the pszSound parameter is a wave filename

SND_RESOURCE Specifies that the pszSound parameter is a wave resource identifier

SND_MEMORY Specifies that the pszSound parameter points to a wave image in memory

continues

11 1634xCH07 11/13/99 11:02 AM Page 115

SND_ASYNC Plays the sound asynchronously, which means that the function returns
immediately after starting the playing of the sound

SND_SYNC Plays the sound synchronously, which means that the function doesn’t
return until the sound finishes playing

SND_LOOP Plays the sound repeatedly until it is explicitly stopped; looped sounds must
be asynchronous, which means that you must use the SND_ASYNC flag with
SND_LOOP

SND_NOSTOP Specifies that the sound won’t interrupt any other sound that is already
playing; the sound won’t be played if another sound is being played

SND_NODEFAULT Specifies that the default system sound won’t be played if the wave sound
isn’t located

This table alludes to a few interesting points regarding the PlaySound() function. First,
the PlaySound() function can only be used to play one sound at a time. This gives you
an idea why DirectSound is necessary for multimedia applications that require the
mixing of multiple sounds, such as most games. Second, the PlaySound() function will
play the default system event sound if the specified wave sound cannot be located. The
SND_NODEFAULT flag can be used to circumvent this default behavior.

116 Hour 7

TABLE 7.1 continued

The PlaySound() function is part of the original Windows multimedia sup-
port and isn’t technically part of DirectX. However, it is useful in situations
where you don’t need the extensive audio capabilities of DirectSound. I
wanted to let you know about it just so you understand the full range of
audio support in Windows.

Following is an example of playing a looped wave file asynchronously using the
PlaySound() function:

PlaySound(“Siren.wav”, NULL, SND_NODEFAULT | SND_ASYNC | SND_LOOP);

Although the PlaySound() function is useful in some situations, it can’t compare to the
rich audio features offered by DirectSound. The good news is that you still use waves
when working with DirectSound. However, it is necessary to extract the wave data from
a wave in order to play the wave using DirectSound. This involves digging into a wave
and navigating through it to extract wave data.

11 1634xCH07 11/13/99 11:02 AM Page 116

Creating the CWave Class
To make using waves easier in C++, it is helpful to create a class, CWave, which encapsu-
lates the functionality of a wave. This class could actually serve two purposes:

1. Provide a high-level means of playing wave audio via the PlaySound() Win32 API
function

2. Provide a low-level means of mixing wave audio with advanced playback capabilities
via DirectSound

Not surprisingly, supporting the PlaySound() Win32 API function in the CWave class
is very straightforward. Supporting DirectSound, however, is not so easy. Listing 7.1
contains the declaration of the CWave class, which gives you an idea about the methods
that you can use to work with waves.

LISTING 7.1 The Wave.h Header File for the CWave Class

1: #ifndef __WAVE_H__
2: #define __WAVE_H__
3:
4: //---
5: // Inclusions
6: //---
7: #include <MMSystem.h>
8:
9: //---
10: // CWave Class - Wave Object
11: //---
12: class CWave {
13: // Public Constructor(s)/Destructor
14: public:
15: CWave();
16: CWave(const char* pszFileName);
17: CWave(UINT uiResID, HMODULE hmod);
18: virtual ~CWave();
19:
20: // Public Methods
21: public:
22: BOOL Create(const char* pszFileName);
23: BOOL Create(UINT uiResID, HMODULE hmod);
24: BOOL IsValid() const { return (m_pImageData ? TRUE :
25: FALSE); };
26: BOOL Play(BOOL bAsync = TRUE, BOOL bLooped = FALSE) const;
27: BOOL GetFormat(WAVEFORMATEX& wfFormat) const;
28: DWORD GetDataLen() const;
29: DWORD GetData(BYTE*& pWaveData, DWORD dwMaxToCopy) const;
30:

Applying DirectSound 117

7

continues

11 1634xCH07 11/13/99 11:02 AM Page 117

31: // Protected Methods
32: protected:
33: BOOL Free();
34:
35: // Private Data
36: private:
37: BYTE* m_pImageData;
38: DWORD m_dwImageLen;
39: BOOL m_bResource;
40: };
41:
42: #endif

As you can see, the CWave class supports three different constructors: a default con-
structor, a file constructor, and a resource constructor. The default constructor simply cre-
ates an empty CWave object with no actual wave data. The file constructor takes a wave
file name as the only parameter and constructs a CWave object from the wave file. Finally,
the resource constructor takes a module instance handle and a resource identifier as para-
meters and creates a CWave object from the resource image of the wave. The destructor
for the CWave class is responsible for freeing the image data associated with the wave.
This will make more sense in a moment.

The Create() methods take on the task of reading a wave from a file or resource. Both
Create() methods call the Free() method to free any previous wave data before loading
a new wave. The IsValid() method checks to see if the object contains valid wave data.

The Play() method is used to play a wave using the Win32 PlaySound() function.
However, it doesn’t enter the picture when using the CWave object with DirectSound. For
that, you must use the GetFormat(), GetDataLen(), and GetData() methods. These
methods allow you to retrieve information about the format of the wave, the length of the
raw wave data, and the raw wave data itself.

The definition of the CWave class is where you learn how these methods are implemented.
Listing 7.2 contains the code for the three constructors and the single destructor for CWave.

LISTING 7.2 The Constructors for the CWave Class

1: CWave::CWave() : m_dwImageLen(0), m_bResource(FALSE),
2: m_pImageData(NULL)
3: {
4: }
5:
6: CWave::CWave(const char* pszFileName) : m_dwImageLen(0),
7: m_bResource(FALSE), m_pImageData(NULL)
8: {
9: Create(pszFileName);
10: }

118 Hour 7

LISTING 7.1 continued

11 1634xCH07 11/13/99 11:02 AM Page 118

11:
12: CWave::CWave(UINT uiResID, HMODULE hmod) : m_dwImageLen(0),
13: m_bResource(TRUE), m_pImageData(NULL)
14: {
15: Create(uiResID, hmod);
16: }
17:
18: CWave::~CWave() {
19: // Free the wave image data
20: Free();
21: }

Notice in the code listing that the file- and resource-based constructors call the Create()
method to initialize the object. If you use the default constructor to create a CWave object,
you must call Create() yourself in order to properly initialize the object. This is a common
object initialization approach in MFC and is referred to as two-phase construction. The
code for these Create() methods is shown in Listing 7.3.

LISTING 7.3 The Create() Methods for the CWave Class

1: BOOL CWave::Create(const char* pszFileName)
2: {
3: // Free any previous wave image data
4: Free();
5:
6: // Flag as regular memory
7: m_bResource = FALSE;
8:
9: // Open the wave file
10: ifstream fileWave(pszFileName);
11:
12: // Get the file length
13: fileWave.seekg(0, ios::end);
14: m_dwImageLen = (DWORD)fileWave.tellg();
15:
16: // Allocate and lock memory for the image data
17: m_pImageData = (BYTE*)GlobalLock(GlobalAlloc(GMEM_MOVEABLE |
18: GMEM_SHARE, m_dwImageLen));
19: if (!m_pImageData)
20: return FALSE;
21:
22: // Read the image data from the file
23: fileWave.seekg(0, ios::beg);
24: fileWave.read(m_pImageData, m_dwImageLen);
25:
26: return TRUE;
27: }
28:

Applying DirectSound 119

7

continues

11 1634xCH07 11/13/99 11:02 AM Page 119

29: BOOL CWave::Create(UINT uiResID, HMODULE hmod)
30: {
31: // Free any previous wave image data
32: Free();
33:
34: // Flag as resource memory
35: m_bResource = TRUE;
36:
37: // Find the wave resource
38: HRSRC hresInfo;
39: hresInfo = FindResource(hmod, MAKEINTRESOURCE(uiResID),
40: “WAVE”);
41: if (!hresInfo)
42: return FALSE;
43:
44: // Load the wave resource
45: HGLOBAL hgmemWave = LoadResource(hmod, hresInfo);
46:
47: if (hgmemWave)
48: {
49: // Get pointer to and length of the wave image data
50: m_pImageData= (BYTE*)LockResource(hgmemWave);
51: m_dwImageLen = SizeofResource(hmod, hresInfo);
52: }
53:
54: return (m_pImageData ? TRUE : FALSE);
55: }

You might notice that both of the Create() methods call the Free() method to free any old
wave data before creating a new wave. Listing 7.4 contains the code for the Free() method.

LISTING 7.4 The GetData() Method for the CWave Class

1: BOOL CWave::Free()
2: {
3: // Free any previous wave data
4: if (m_pImageData) {
5: HGLOBAL hgmemWave = GlobalHandle(m_pImageData);
6:
7: if (hgmemWave) {
8: if (m_bResource)
9: // Free resource
10: FreeResource(hgmemWave);
11: else {
12: // Unlock and free memory
13: GlobalUnlock(hgmemWave);
14: GlobalFree(hgmemWave);
15: }
16:

120 Hour 7

LISTING 7.3 continued

11 1634xCH07 11/13/99 11:02 AM Page 120

17: m_pImageData = NULL;
18: m_dwImageLen = 0;
19: return TRUE;
20: }
21: }
22: return FALSE;
23: }

The implementation of the Play() method shows how the PlaySound() Win32 API function
is used to provide a high-level means of playing waves using the CWave class (Listing 7.5) .

LISTING 7.5 The Play() Method for the CWave Class

1: BOOL CWave::Play(BOOL bAsync, BOOL bLooped) const
2: {
3: // Check validity
4: if (!IsValid())
5: return FALSE;
6:
7: // Play the wave
8: return PlaySound((LPCSTR)m_pImageData, NULL, SND_MEMORY |
9: SND_NODEFAULT | (bAsync ? SND_ASYNC : SND_SYNC) |
10: (bLooped ? (SND_LOOP | SND_ASYNC) : 0));
11: }

Although the Play() method has its place in making CWave a well-rounded class, this
book is about DirectX, which means that you’re interested in using the CWave class to
play waves using DirectSound. More important to DirectSound are the GetFormat(),
GetDataLen(), and GetData() methods (Listings 7.6–7.8) .

LISTING 7.6 The GetFormat() Method for the CWave Class

1: BOOL CWave::GetFormat(WAVEFORMATEX& wfFormat) const
2: {
3: // Check validity
4: if (!IsValid())
5: return FALSE;
6:
7: // Setup and open the MMINFO structure
8: CMMMemoryIOInfo mmioInfo((HPSTR)m_pImageData, m_dwImageLen);
9: CMMIO mmio(mmioInfo);
10:
11: // Find the WAVE chunk
12: CMMTypeChunk mmckParent(‘W’,’A’,’V’,’E’);
13: mmio.Descend(mmckParent, MMIO_FINDRIFF);
14:
15: // Find and read the format subchunk

Applying DirectSound 121

7

continues

11 1634xCH07 11/13/99 11:02 AM Page 121

16: CMMIdChunk mmckSubchunk(‘f’,’m’,’t’,’ ‘);
17: mmio.Descend(mmckSubchunk, mmckParent, MMIO_FINDCHUNK);
18: mmio.Read((HPSTR)&wfFormat, sizeof(WAVEFORMATEX));
19: mmio.Ascend(mmckSubchunk);
20:
21: return TRUE;
22: }

LISTING 7.7 The GetDataLen() Method for the CWave Class

1: DWORD CWave::GetDataLen() const
2: {
3: // Check validity
4: if (!IsValid())
5: return (DWORD)0;
6:
7: // Setup and open the MMINFO structure
8: CMMMemoryIOInfo mmioInfo((HPSTR)m_pImageData, m_dwImageLen);
9: CMMIO mmio(mmioInfo);
10:
11: // Find the WAVE chunk
12: CMMTypeChunk mmckParent(‘W’,’A’,’V’,’E’);
13: mmio.Descend(mmckParent, MMIO_FINDRIFF);
14:
15: // Find and get the size of the data subchunk
16: CMMIdChunk mmckSubchunk(‘d’,’a’,’t’,’a’);
17: mmio.Descend(mmckSubchunk, mmckParent, MMIO_FINDCHUNK);
18: return mmckSubchunk.cksize;
19: }

LISTING 7.8 The GetData() Method for the CWave Class

1: DWORD CWave::GetData(BYTE*& pWaveData, DWORD dwMaxLen) const
2: {
3: // Check validity
4: if (!IsValid())
5: return (DWORD)0;
6:
7: // Setup and open the MMINFO structure
8: CMMMemoryIOInfo mmioInfo((HPSTR)m_pImageData, m_dwImageLen);
9: CMMIO mmio(mmioInfo);
10:
11: // Find the WAVE chunk
12: CMMTypeChunk mmckParent(‘W’,’A’,’V’,’E’);
13: mmio.Descend(mmckParent, MMIO_FINDRIFF);
14:
15: // Find and get the size of the data subchunk
16: CMMIdChunk mmckSubchunk(‘d’,’a’,’t’,’a’);

122 Hour 7

LISTING 7.6 continued

11 1634xCH07 11/13/99 11:02 AM Page 122

17: mmio.Descend(mmckSubchunk, mmckParent, MMIO_FINDCHUNK);
18: DWORD dwLenToCopy = mmckSubchunk.cksize;
19:
20: // Allocate memory if the passed in pWaveData was NULL
21: if (pWaveData == NULL)
22: pWaveData = (BYTE*)GlobalLock(GlobalAlloc(GMEM_MOVEABLE,
23: dwLenToCopy));
24: else
25: // If we didn’t allocate our own memory, honor dwMaxLen
26: if (dwMaxLen < dwLenToCopy)
27: dwLenToCopy = dwMaxLen;
28: if (pWaveData)
29: // Read waveform data into the buffer
30: mmio.Read((HPSTR)pWaveData, dwLenToCopy);
31:
32: return dwLenToCopy;
33: }

These three methods use a couple of multimedia support classes, CMMMemoryIOInfo and
CMMIO, to retrieve information about the format of a wave and the raw data associated
with a wave. This is necessary because DirectSound utilizes waves at a low-level and
must have access to raw wave data.

Applying DirectSound 123

7

The code for the CMMMemoryIOInfo and CMMIO multimedia support
classes can be found on the accompanying CD-ROM. This code doesn’t

have much to do directly with DirectSound, so it’s not terribly important to
delve into the details of it here.

You might notice that the GetFormat(), GetDataLen(), and GetData() methods operate
on chunks of data. Chunks form the basis of RIFF files, which represent the format wave
files are stored in. It isn’t critical that you understand the structure of RIFF files, but I
thought it was worth mentioning to help make the CWave code a little clearer. For more
information on RIFF files and how to navigate through them, refer to the multimedia I/O
data structures and functions in the Win32 API. On the other hand, you could just use the
CWave class and not worry about the hassles of navigating RIFF files.

Using the CWave Class
Now that you’ve seen how the CWave class is implemented, you’re probably curious to
see how it works. Following is an example of playing a wave using the high-level Play()
method in the CWave class:

CWave wavExplode(“Explode.wav”);
wavExplode.Play();

11 1634xCH07 11/13/99 11:02 AM Page 123

Although the high-level approach to playing waves is certainly simple and effective, it
doesn’t offer the power and flexibility of DirectSound. The remainder of the hour focuses
on how to use the CWave class with DirectSound.

Playing Sound Effects with DirectSound
To get a feel for using DirectSound, you’re going to add sound effects to the cityscape
example application from Hour 5. The remainder of the hour focuses on the coding
required to pull this off. In the process, you’ll learn how to mix sound effects such as
footsteps, thunder, and sirens at random intervals, and with random volume, and varying
panning and frequency values. By altering the volume, panning, and frequency of
sounds, you can add significantly to the mood and effect of the cityscape.

124 Hour 7

Because the cityscape application you develop in this hour simulates sounds
occurring at different spatial locations, it might make sense to use DirectSound’s
3D audio features. However, I wanted to keep things relatively simple. Even so,
you might be surprised at how effective it is to vary the volume, panning, and
frequency of sound effects to give an application a realistic feel.

The cityscape application uses a total of nine sound effects, which are stored in the
lpDSBSounds array. Following are the different sound effects used in the application,
which help to add realism and ambience:

• Siren

• Car skid

• Car horn

• Clock

• Dog bark

• Lightning

• Thunder

• Gunshot

• Footstep

Following are the declarations for the sound-related variables used in the application:

LPDIRECTSOUND lpDS;
LPDIRECTSOUNDBUFFER lpDSBSounds[NUMSOUNDS];
LONG lSirenPan;
LONG lSirenPanInc;

11 1634xCH07 11/13/99 11:02 AM Page 124

The lpDS variable stores a pointer to the DirectSound object. The lpDSBSounds array
stores an array of pointers to the DirectSound buffers for each sound effect. The
lSirenPan and lSirenPanInc variables are used to control the panning of the siren
sound effect, which is moved from right to left or left to right between channels
(speakers) when played.

In addition to these new variables, some new error messages are required to notify the
user of any problems encountered while using DirectSound:

const char Err_DirectSoundCreate[] = “DirectSoundCreate FAILED”;
const char Err_CreateBuff[] = “CreateBuffer FAILED”;
const char Err_LoadWAV[] = “Error Loading Sound”;

The DirectSound object itself is created and initialized in the Init() function. The new
code added to this function is shown in Listing 7.9.

LISTING 7.9 DirectSound Initialization Code that Is Added to the Init() Function

1: // Create the DS object
2: if (DirectSoundCreate(NULL, &lpDS, NULL) != DS_OK)
3: {
4: ErrStr = Err_DirectSoundCreate;
5: return FALSE;
6: }
7:
8: // Set the cooperation level for the DS object
9: if (lpDS->SetCooperativeLevel(hWnd, DSSCL_NORMAL) != DS_OK)
10: {
11: ErrStr = Err_Coop;
12: return FALSE;
13: }
14:
15: // Initialize the DS buffers
16: if (!load_sounds())
17: {
18: return FALSE;
19: }

The Init() function first calls the DirectSoundCreate() function to create a
DirectSound object. The cooperative level of the DirectSound object is then set
with a call to SetCooperativeLevel(). Setting the cooperative level is a strict require-
ment before using a DirectSound object. In this case, the cooperative level is set to
DSSCL_NORMAL, which provides the smoothest multitasking and resource-sharing behavior
for the DirectSound object. The last step in the Init() function is to load and initialize
the sounds with a call to load_sounds(), which you learn about in a moment.

Applying DirectSound 125

7

11 1634xCH07 11/13/99 11:02 AM Page 125

A single line of code is all that is required to cleanup the remnants of DirectSound. The
following line of code, which is added to the Cleanup() function, accomplishes this task:

SafeRelease(lpDS);

SafeRelease() is actually a macro that calls the Release() method and then sets the
object pointer to NULL:

#define SafeRelease(x) if (x) { x->Release(); x=NULL;}

It’s important to note that releasing the DirectSound object also releases the DirectSound
buffers associated with the object.

Listing 7.10 contains the code for the load_sounds() function, which loads and initial-
izes the sounds for the application. Keep in mind that all the sounds are actually stored in
DirectSoundBuffer objects.

LISTING 7.10 The load_sounds() Function that Is Used to Initialize the Waves
and DirectSound Buffers

1: BOOL load_sounds()
2: {
3: // Initialize waves
4: CWave waves[NUMSOUNDS];
5: waves[0].Create(“Siren.wav”);
6: waves[1].Create(“CarSkid.wav”);
7: waves[2].Create(“Clock.wav”);
8: waves[3].Create(“Dog.wav”);
9: waves[4].Create(“Lightning.wav”);
10: waves[5].Create(“Thunder.wav”);
11: waves[6].Create(“GunShot.wav”);
12: waves[7].Create(“CarHorn.wav”);
13: waves[8].Create(“Footstep.wav”);
14:
15: // Initialize secondary DS buffers
16: for (int i = 0; i < NUMSOUNDS; i++) {
17: // Get the wave information
18: DWORD dwDataLen = waves[i].GetDataLen();
19: WAVEFORMATEX wfFormat;
20: waves[i].GetFormat(wfFormat);
21:
22: // Setup the DS buffer description
23: DSBUFFERDESC dsbdDesc;
24: ZeroMemory(&dsbdDesc, sizeof(DSBUFFERDESC));
25: dsbdDesc.dwSize = sizeof(DSBUFFERDESC);
26: dsbdDesc.dwFlags = DSBCAPS_CTRLFREQUENCY | DSBCAPS_CTRLPAN |

➥DSBCAPS_CTRLVOLUME | DSBCAPS_STATIC;
27: dsbdDesc.dwBufferBytes = dwDataLen;
28: dsbdDesc.lpwfxFormat = &wfFormat;
29:

126 Hour 7

11 1634xCH07 11/13/99 11:02 AM Page 126

30: // Create the DS buffer
31: if (lpDS->CreateSoundBuffer(&dsbdDesc,
32: &lpDSBSounds[i], NULL) != DS_OK)
33: {
34: ErrStr = Err_CreateBuff;
35: return FALSE;
36: }
37:
38: // Lock the DS buffer
39: BYTE* pDSBuffData;
40: if (lpDSBSounds[i]->Lock(0, dwDataLen, (void**)&pDSBuffData,
41: &dwDataLen, NULL, 0, 0) != DS_OK)
42: {
43: ErrStr = Err_LoadWAV;
44: return FALSE;
45: }
46:
47: // Write wave data to the DS buffer
48: dwDataLen = waves[i].GetData(pDSBuffData, dwDataLen);
49:
50: // Unlock the DS buffer
51: if (lpDSBSounds[i]->Unlock(pDSBuffData, dwDataLen, NULL, 0) !=
52: DS_OK)
53: {
54: ErrStr = Err_LoadWAV;
55: return FALSE;
56: }
57: }
58:
59: return TRUE;
60: }

The load_sounds() method is called by Init() to create and initialize a sound buffer
for each sound effect wave. This is where the CWave class enters the picture with
DirectSound. The CWave class includes support methods necessary to handle creating a
sound buffer of the correct size and with the correct wave format, along with copying the
wave data into the buffer. load_sounds() creates an array of CWave objects as a means of
initializing DirectSound buffers. The CWave objects are created directly from wave files
stored on disk. The static DirectSound buffers are then created based on each of the
CWave objects.

Before you learn how to play sounds using DirectSound, it’s important to understand that
the memory associated with a DirectSound buffer can potentially be freed. This can pose
a big problem because it isn’t possible to play a sound that is no longer in memory. The
solution is to restore the buffer before attempting to play it. The RestoreDSBuffers()
method (Listing 7.11) restores the memory for the sound effect buffers and reinitializes
them with wave data. RestoreDSBuffers() simply calls the Restore() method on each
buffer and then reinitializes them with a call to load_sounds().

Applying DirectSound 127

7

11 1634xCH07 11/13/99 11:02 AM Page 127

LISTING 7.11 The RestoreDSBuffers() Function that Is Used to Restore
DirectSound Buffers

1: BOOL RestoreDSBuffers()
2: {
3: // Restore the buffers
4: for (int i = 0; i < NUMSOUNDS; i++)
5: if (lpDSBSounds[i]->Restore() != DS_OK)
6: return FALSE;
7:
8: // Re-initialize the buffers
9: return load_sounds();
10: }

Most of the sound effects in the cityscape application are played in the main timing loop
of the WinMain() function. This loop was established in previous lessons to establish a
frame rate for the DirectDraw animation. You’re now going to use it as a basis for gener-
ating random sound effects. Listing 7.12 contains the code added to the timing loop of
the WinMain() function.

LISTING 7.12 Code Added to the WinMain() Function that Randomly Plays Sound
Effects

1: DWORD dwStatus;
2: lpDSBSounds[8]->GetStatus(&dwStatus);
3: if (move_rate != 0) {
4: // Check to make sure the buffer hasn’t been lost
5: if (dwStatus & DSBSTATUS_BUFFERLOST)
6: RestoreDSBuffers();
7:
8: lpDSBSounds[8]->SetFrequency(16000 + abs(move_rate) * 40);
9: if (!(dwStatus & DSBSTATUS_LOOPING))
10: lpDSBSounds[8]->Play(0, 0, DSBPLAY_LOOPING);
11: }
12: else
13: if (dwStatus & DSBSTATUS_LOOPING)
14: lpDSBSounds[8]->Stop();
15:
16:
17: // play a random sound (1 in 50 chance per frame)
18:
19: if (rand() % 50 == 0)
20: {
21: // Determine which sound to play
22: int nIndex = rand() % (NUMSOUNDS - 2);
23: if (lpDSBSounds[nIndex] != NULL)
24: {
25: DWORD dwStatus;
26: lpDSBSounds[nIndex]->GetStatus(&dwStatus);
27:

128 Hour 7

11 1634xCH07 11/13/99 11:02 AM Page 128

28: // Check to make sure the buffer hasn’t been lost
29: if (dwStatus & DSBSTATUS_BUFFERLOST)
30: RestoreDSBuffers();
31:
32: // Check to make sure the sound isn’t already playing
33: if (!(dwStatus & DSBSTATUS_PLAYING))
34: {
35: if (nIndex > 0)
36: {
37: // Set the panning of the sound
38: lpDSBSounds[nIndex]->SetPan((rand() % 2000) - 1000);
39:
40: // Set the volume of the sound
41: lpDSBSounds[nIndex]->SetVolume((rand() % 3) * -250);
42:
43: // Play the sound
44: lpDSBSounds[nIndex]->Play(0, 0, 0);
45: }
46: else
47: {
48: // Set the panning of the siren
49: LONG lStart = (rand() % 2) ? -1 : 1;
50: lSirenPan = lStart * 8000;
51: lSirenPanInc = -(lStart * 25);
52: lpDSBSounds[nIndex]->SetPan(lSirenPan);
53:
54: // Play the siren sound
55: lpDSBSounds[nIndex]->Play(0, 0, DSBPLAY_LOOPING);
56: }
57: }
58: }
59: }
60:
61: // If siren sound is playing, see if we should stop it
62: lpDSBSounds[0]->GetStatus(&dwStatus);
63: if (dwStatus & DSBSTATUS_LOOPING)
64: {
65: if ((lSirenPan < -8000) || (lSirenPan > 8000))
66: lpDSBSounds[0]->Stop();
67: else
68: {
69: lSirenPan += lSirenPanInc;
70: lpDSBSounds[0]->SetPan(lSirenPan);
71: lpDSBSounds[0]->SetVolume(-(abs(lSirenPan) / 5));
72: }
73: }

The timing loop in the WinMain() function is entered every 16 milliseconds by default,
as determined by code inherited from Hour 5. The timing loop first checks to see if a
sound effect should be played, which is given a 1 in 50 likelihood of happening. This
results in a sound effect being played an average of every 0.8 seconds (50 × 0.016).

Applying DirectSound 129

7

11 1634xCH07 11/13/99 11:02 AM Page 129

This might sound like a short span between sound effects, but it actually works pretty
well with the types of sounds used in this example. You can always tweak this number to
get a different result.

The first sound effect code plays the footstep sound effect in response to the user
moving. In other words, the move_rate variable is checked to see if the footstep sound
effect needs to be played. If so, the sound effect is looped with its frequency based on the
value of move_rate. This yields an audible effect of the user walking faster or slower
based on the rate at which she is scrolling.

Most of the other sound effects in the application are simply played at random by
selecting one from the array of DirectSound buffers. The GetStatus() method is then
called on the selected sound buffer to make sure that the buffer hasn’t been lost. If it has
been lost, the RestoreDSBuffers() method is called to restore all the sound buffers.
WinMain() also checks to make sure that the selected sound buffer isn’t already playing.
If the sound buffer isn’t the siren sound effect, a random panning and volume is set and
the sound buffer starts playing.

If the buffer is the siren sound effect, the panning and volume are specially set so that the
siren sounds like it is flying by. This also requires WinMain() to update the settings of
the siren sound effect buffer periodically, which is reflected by the last block of code in
the timing loop. The siren sound effect is played looped, which means that it is played
repeatedly until it cycles from one speaker to the other and fades out. This logic is
entirely controlled by the code in the timing loop.

Along with the sound effects played in the WinMain() timing loop, the cityscape applica-
tion also plays a sound in the render_frame() function. This might seem like a strange
place to play sounds, but it happens to work out because it is the best place to ascertain
the location of the taxi. This is useful because the car horn sound is only played when
the taxi is visible on the screen. Furthermore, the car horn sound is panned based on the
location of the taxi on the screen. Following is the code added to the render_frame()
function to accomplish this task:

DWORD dwStatus;
lpDSBSounds[7]->GetStatus(&dwStatus);
if (!(dwStatus & DSBSTATUS_PLAYING) && (rand() % 25 == 0)) {

lpDSBSounds[7]->SetPan((taxi_pos + (taxi_width / 2) -
screen_pos - 320) * 20);

lpDSBSounds[7]->Play(0, 0, 0);
}

That wraps up the DirectSound enhancements to the cityscape application. Feel free to
play around with the code and add sound effects of your own to further spice up the
application.

130 Hour 7

11 1634xCH07 11/13/99 11:02 AM Page 130

Summary
This hour tackled the practical side of DirectSound by showing you how to use DirectSound
to add sound effects to an existing application. You began the hour by taking a step back and
laying some ground rules regarding how DirectSound is used in the context of game devel-
opment. You then moved on to exploring waves and how they are loaded and manipulated.
This was necessary because DirectSound buffers are initialized using raw wave data.

With a handy class for manipulating waves in hand, you finally moved on to the impor-
tant stuff: putting DirectSound to use. You learned how to create and use DirectSound
buffers that store sound effects. You also found out how to play, loop, and stop these
sound buffers. You even learned how to alter the properties of sound buffers, including
volume, panning, and frequency.

Q&A
Q How does DirectSound establish the format of the primary sound buffer?

A By default, the primary sound buffer is set to 8-bit 22 kHz mono regardless of the
format of the secondary sound buffers. You should explicitly set the format of the
primary sound buffer to match the secondary buffers if you plan on using a higher
quality sound format. However, this requires you to use a higher priority level flag
for the DirectSound object: DSSCL_PROIRITY.

Q How do I use waves as resources?

A You can store waves as resources by including them in an application’s resource
file and giving them the resource type WAVE. This will result in the waves being
included in the application’s executable file; you can also compile wave resources
into a DLL. To load a wave resource, you simply use the CWave constructor that is
designed to load waves from resources.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and get you thinking about how to put your knowledge into practice. The
answers to the quiz are in Appendix A, “Answers.”

Quiz
1. What do you do to give a sound buffer a better chance of being mixed in hardware?

2. What Win32 API structure do you use to contain format information about a wave?

3. What method in the CWave class is used to obtain raw wave data?

Applying DirectSound 131

7

11 1634xCH07 11/13/99 11:02 AM Page 131

4. What file format serves as the basis for Windows waves?

5. What is the purpose of the lSirenPan variable in the cityscape application?

6. What value do you pass to the SetVolume() method to completely silence a sound?

7. Why do you not need to call the Release() method on DirectSound buffers?

8. What should you do if the memory associated with a sound buffer is freed?

9. How does the move_rate variable impact the footstep sound in the cityscape
application?

10. What method do you call on a sound buffer to see if the buffer memory has been lost?

Exercises
1. Experiment with changing the values of the sounds in the cityscape application.

More specifically, try adjusting the panning of the siren sound to make it move
faster from speaker to speaker. Also, try adjusting the frequency of the footstep
sound so that the footsteps speed up and slow down more dramatically.

2. Come up with some sound effects of your own and integrate them into the
cityscape application. Make sure to save the sound effects as 22 kHz, 8-bit, mono
sounds so that they match the other sounds in the application. Also, keep in mind
that you’ll have to create and initialize new DirectSoundBuffer objects in the
application to accommodate these sounds.

132 Hour 7

11 1634xCH07 11/13/99 11:02 AM Page 132

Hour
8 DirectMusic—Interactive Music

9 Applying DirectMusic

10 Introduction to 3D Concepts

11 Rendering the 3D Scene

PART IV
Welcome to 3D

12 1634xPart IV 11/13/99 10:50 AM Page 133

12 1634xPart IV 11/13/99 10:50 AM Page 134

HOUR 8
DirectMusic—Interactive
Music

In the previous hour, you learned how to create sounds by using DirectSound.
In this hour, we will discuss another component of the DirectX SDK that
deals with sound called DirectMusic. DirectMusic is a relatively new compo-
nent of DirectX. With the release of DirectX 7.0, DirectMusic joins
DirectSound in enriching a player’s environment with sound and music.

DirectMusic gives a programmer the capability of creating musical scores to
enrich a player’s experience. Music can involve the player more deeply in a
game. It can push him along, or perhaps give him a sense of trepidation
about a particular area of the game. By using the features of DirectMusic,
you can create a musical score that adapts itself based on the player’s
actions. It can seem to react to the current state of the game. As the player
begins the game or enters a particular area, the music moves slowly. Then,
as the player gets into a tough area of the game, the music speeds up and
seems to match the intensity of the moment. You can accomplish these
things and more using DirectMusic.

13 1634xCH08 11/13/99 11:05 AM Page 135

The lesson in this hour begins by introducing you to the IDirectMusicPerformance
interface, which we will eventually use to add music to our game. We will begin with a
discussion of Microsoft’s Software Synthesizer and how using interactive music can
enhance any game. We then follow with a few details on the interface, a primer on
music, and finally the concept of interactive music.

In this hour, you learn

• The Microsoft Synthesizer and its features

• The concepts of interactive music

• About the IDirectMusicPerformance interface

• The concepts of digital music

• The concepts of creating dynamic music

The Features of DirectMusic
The mood and atmosphere of today’s games owe a lot to music. When driving our cars,
most people listen to some kind of music on the radio. The music can calm us or get us
excited and can make the trip a little more enjoyable. Like driving in a real car, a racing
game seems more enjoyable when it has a range of music available for the player to lis-
ten to. This music helps involve the player in what is happening in the game. Virtually
any game can use music to enhance the user experience.

Creating this enjoyable music requires the use of some type of audio hardware. This
hardware is usually a general audio card of some type. The audio cards produced today
are capable of much higher fidelity sound than what was available only a few years ago.
These cards can play more sounds at one time and can play those sounds more richly.
Using the features of DirectMusic will allow you to play many instruments at one time,
as though a full orchestra were playing from the computer. This is often referred to as
polyphony.

Polyphony refers to the nature of music having more than one voice. It derives
from the Latin words poly, meaning many and phonic, meaning sound.

The large number of voices of these cards gives us the ability to make our music sound
richer with more instruments playing at the same time. With this capability, of course,
comes an increase in complexity. Thanks to DirectMusic, though, a lot of the complexi-
ties of playing music through an audio card can be greatly reduced. In fact, within the
next two hours, you will see just how easy using DirectMusic to add music to that next
big project of yours really is.

136 Hour 8

NEW TERM

13 1634xCH08 11/13/99 11:05 AM Page 136

DirectMusic, like many of the other components of the DirectX SDK, also adjusts to the
capabilities of the hardware platform it is running on. DirectMusic does not support a
HAL, like the DirectSound interface does, but it supports a similar concept using soft-
ware synthesizers. For people who have older audio cards, DirectMusic can use the stan-
dard, built-in Microsoft Synthesizer, to create a rich, uniform sound that the cards might
not be capable of producing through hardware.

DirectMusic also throws a few twists on being just a general song player. Many games
available today have music that seems stagnant, and the music does not seem interactive
at all. The capabilities of DirectMusic will allow you to go beyond playing just songs,
changing your music in reaction to the player’s actions. You can add this capability to
your own games by adding interactive music to your other list of features. Imagine the
tempo of the music increasing as the player nears a tough point in the game, and the
tempo slowing back down as the situation becomes easier. By adjusting at runtime the
music that you created during development, you can create music that seems to follow
the player and becomes a reactive element of your game.

Perhaps the most useful feature that DirectMusic provides is the abstraction from having
to deal with actual sound production via wave data. With DirectSound, you have to be
concerned with streams of sound data and managing the buffers containing that data.
With DirectMusic, you can describe your music in terms of a composer: with tempo
changes, notes, keys, and so on. This general way to describe music data is called MIDI,
which stands for Musical Instrument Digital Interface.

DirectMusic—Interactive Music 137

8

MIDI, as a standard, began its history as a hardware standard to describe
essentially the same things that DirectMusic describes: notes in a song. It is
important to realize the two different ways to describe sound using DirectX:
DirectSound uses waveform data to describe sounds, and DirectMusic uses
MIDI to describe notes.

The Microsoft Synthesizer
The major component of DirectMusic’s actual music production is the synthesizer. It is
the synthesizer’s responsibility to turn the music data provided by the
IDirectMusicPerformance into the actual waveform data that will be played by the
audio hardware. The synthesizer operation can be handled by the hardware directly, or it
can be handled through software. DirectMusic even has interfaces to allow third parties
to develop their own custom software synthesizers.

13 1634xCH08 11/13/99 11:05 AM Page 137

For DirectMusic to allow music played on virtually any piece of audio hardware to
sound the same on any other hardware, Microsoft includes a standard software synthe-
sizer with DirectMusic. This synthesizer is called, amazingly enough, the Microsoft
Software Synthesizer. Its job is to take the general music data that is created during play-
back of music by IDirectMusicPerformance and translate it into the actual waveform
data that will be played by the audio hardware. This data is then fed into the audio card
for actual waveform playback.

138 Hour 8

Coincidentally, the actual audio playback is handled through a connection to
DirectSound. As you learned earlier, DirectSound is capable of playing
sounds incredibly fast and without bogging down the CPU. This helps
DirectMusic achieve some of its speed.

The Microsoft Synthesizer supports the downloadable sounds (DLS) standard. DLS
allows waveform samples to be loaded into memory and assigned to any specified bank
or instrument location. Because these samples are typically wave files, anything that can
be stored in a wave file can be played as an instrument. The Microsoft Synthesizer also
comes with its own DLS instrument file. This file contains a set of General MIDI instru-
ments that are licensed from Roland.

A MIDI instrument refers to a standard sound that represents a particular
musical instrument. The first instrument of the General MIDI set represents
a piano. 128 standard instruments exist within the standard General MIDI
set. The General MIDI set licensed from Roland contains these 128 instru-
ments and an additional 126 instruments that are unique to the Roland
instrument set.

With the large number of sound cards available today, it is difficult to get consistent
sounding music from any two sound cards. The reason for this is because of the fact that
each audio card vendor uses a different wave table for internal MIDI synthesis. This is
not to say that any particular audio card is more or less adequate than any other; it just
means that the way your music sounds on any one machine will depend greatly on the
particular audio card playing your music. In the past, you were lucky if every player was
using the same audio hardware as you. Now by using DirectMusic and the Microsoft
Synthesizer, you won’t have to worry what audio card the player has.

13 1634xCH08 11/13/99 11:05 AM Page 138

Wave-table refers to a collection of waveform samples, usually stored in memory
on a sound card. This is very similar, in fact, to DLS, except a proprietary inter-

face is often used to load and manage the wave table on a particular card.

DLS architecture and the use of Roland’s General MIDI instruments gives the Microsoft
Synthesizer the capability to play the same piece of music on two totally different sound
cards and still have the music sound exactly the same. This ensures that the way your
music sounds when you play it on your development machine will be the way that
any user playing your music will hear it. This power extends to any waveforms you
create yourself. Simply ensure that you include any DLS file you used as instruments
while creating your music. It is because of the inclusion of the Roland instruments with
DirectMusic, as a standard installation item, that you should consider using these instru-
ments where possible.

The Age of Interactive Music
Today’s gamers are becoming more and more demanding of game developers to “push
the envelope.” And although the graphical components of these games seems to move
forward with leaps and bounds, music still seems to be lacking. Sure, some games come
with audio tracks on the CD that you can play in the background. Other games have
background music in the game, but unfortunately I usually find myself turning it off
because of its repetitiveness.

What if you could create many blocks of reusable musical patterns and set parameters
about how to use them in sequence? You could then rearrange blocks of these patterns in
a different order to create a new musical score without having to create any additional
music. Or better yet, let DirectMusic do the arranging for you! You can then simply
change some of the parameters of the music, depending on player actions. The music
would seem to react to the player. By adding this interactive power to your games, you
should be able to bring the mood and aura of your games to a new level. DirectMusic
makes creating interactive music simple and easy, as we will see in the next hour.

Dynamic Creation of Music
By applying the power of DirectMusic, you can create music in your game that is actu-
ally dynamic. This can be accomplished several different ways. You could use some of
the capabilities of the DirectMusic Producer to create your music. During creation, you
assign properties to the musical patterns that will allow the IDirectMusicPerformance
object to randomize your musical piece during playback. You could also use another
piece of music editing software to create linear MIDI pieces of music. Then during play-
back, simply change the properties of the music using IDirectMusicPerformance.

DirectMusic—Interactive Music 139

8
NEW TERM

13 1634xCH08 11/13/99 11:05 AM Page 139

A pattern is a series of musical notes usually comprising only a measure or two.
These notes describe the actual note pitch that is played, at what volume the note

is played, and for how long. Patterns are normally used to create dynamic compositions,
either within the editor or during runtime.

DirectMusic has the capability to make changes to the music you create. During play-
back, DirectMusic can change the currently played notes to other notes or to other
octaves. DirectMusic can also rearrange the patterns into different sequences. Depending
on the exact arrangement chosen during playback, your music will actually seem to be
created on-the-fly. This of course depends greatly on the way the music was composed.
DirectMusic can’t create music algorithmically, or on its own. A human composer still
needs to create the components of the music. DirectMusic simply knows of ways to
rearrange music you have composed to create a unique piece every time your music is
played.

By using the DirectMusic Producer application, discussed in more detail in the next hour,
you can create patterns of music that will be played back randomly. You can create dif-
ferent bands that can be loaded to play the same patterns with different instruments.
Motifs can be created to add flare to the pattern combinations, adding breaks and fills,
interesting intros, and endings. To play a certain set of patterns, you can create segments
that allow you to have greater control over how your patterns are played back.

A motif is a specialized pattern of music that is generally very short. Motifs are
played over other patterns to indicate solo pieces that do not interrupt the current
musical score.

A segment is the actual arrangement of music. It represents all the musical data,
usually made up of other patterns arranged in a particular order.

For greater randomness, you can apply templates, which allow you to further randomize
your music using chordmaps. During playback, IDirectMusicPerformance will ran-
domly select certain chords from the chord maps you created and transpose the next sec-
tion of music to the selected chord. Because the chord selection is a random process,
your music will sound different every time it is played.

A chord is several musical notes that are played at the same time to provide a
harmonic component to the melody. Chords are typically made up of three or
four notes.

A chordmap is a listing of chords created by a human composer that DirectMusic
will use to determine the next available chord during dynamic music creation.

140 Hour 8

NEW TERM

NEW TERM

NEW TERM

NEW TERM

NEW TERM

13 1634xCH08 11/13/99 11:05 AM Page 140

If you would rather just create your MIDI songs using another music editing package,
during playback you can still change some of the parameters by which your music will
be played. For example, you could set the tempo very low at the beginning of a level.
Then as the player got closer to the main boss at the end of the level, you increase the
tempo. If the player turns back and goes the other way, you could decrease the tempo.
Although this method does not provide the flexibility offered by DirectMusic Producer, it
still allows you to change some of the dynamics of your music and helps make it seem a
little more interactive.

Another option you might consider is to create your musical patterns in whatever musical
editing software you prefer and output the patterns as a MIDI file. You can then import
the MIDI files as patterns into DirectMusic Producer. When imported, you can use the
Producer to add different bands or create different styles with the patterns you have
imported. This will allow you to add more flexibility to your MIDI music, while still
allowing you to use the composing environment you might already be using.

Composition of Music in the Digital Realm
Music creation used to involve a lot of time in experimenting with the music on a key-
board or other instrument, and then composing the music on paper. With the number of
music editing packages on the market today, it is easy for the do-it-yourself person to
find a decent musical editing package for as little as a hundred dollars or so.

Many of the music editing packages that are available produce standard MIDI files. The
whole process of music creation can be made simpler by using a MIDI keyboard. Most
audio cards today, in addition to outputting waveform data, usually have the capability of
connecting to MIDI devices. This is usually accomplished through a cable attached to the
joystick port on the audio card. What this allows you, as keyboardist, to do is capture the
notes from your keyboard. But suppose that you don’t have a MIDI keyboard to record
your music with. That’s oaky because most software packages today allow you to create
your musical score visually on the screen using either a musical staff or virtual keyboard.

After recording your performances using a keyboard or by using the virtual keyboard,
you can make any adjustments necessary to your musical score. Using any one of the
music editing software packages, you can adjust the duration of notes, the actual pitch
the note is played at, add other notes, and even copy entire measures to other parts of the
musical score. The creation of music on the computer allows greater control over the
time it takes to create music. More time can be spent fine-tuning your music rather than
inputting it in the first place.

DirectMusic—Interactive Music 141

8

13 1634xCH08 11/13/99 11:05 AM Page 141

A Quick Primer on Musical Structure
Before delving into the details of DirectMusic, we should probably start with a quick
primer on musical structure. I won’t try to bore you with a lot of fundamental details, but
having an understanding of some of the basics of music will help during the next hour
where we use DirectMusic Producer. We will be using the Producer application to create
some elementary music, and having at least a cursory understanding of music principle
should help with your DirectMusic endeavors. If you are relatively new to music, this
hour should help explain some of the components of musical structure. For the rest of
you, consider this a refresher course on music.

So what is music? Music, in its simplest form, is comprised of sounds that are played
over a period of time. A more technical description would be several musical notes or
rhythmic beats that follow a particular rhythm. The period of time is known as the score.
Musical instruments create the sounds; although, as you already know, you can actually
use any kind of sound you want. A trumpet, a drum, a flute, a bird chirp, and a doorbell
are all examples of an instrument.

Each musical score has a certain measure of time. This is known as the tempo of the
score. The tempo is the number of beats that occur within a minute. During the score, it
is possible that the tempo might change, and it might change at different rates. When the
tempo increases, the music is played faster; when the tempo decreases, the music is
played slower. There can also be distinct points within the score that the tempo will
change.

Given a particular tempo, there occurs a certain number of beats within a controlled
period of time. The controlled period of time is called a measure. The most common
length for a measure is four beats, also known as 4/4 time. The two fours are actually
found on top of each other when seen on a sheet of music. The number on the top, or
left, gives the number of beats contained within a measure. The number on the bottom,
or right, gives the note length that is given each beat. I will explain this in a little more
detail in a moment.

A measure is a certain number of beats that occur within a specified period, usu-
ally four beats. Measures are used to break up a musical score into smaller
pieces, consisting of a small number of actual notes.

A musical note is the smallest part of a musical score and represents a sound played at a
particular pitch for a particular duration. The pitch of a note determines the actual sound
that you hear, and the duration is how long the sound is played. The pitches of a note are
actually written on sheet music using the letters from A to G. Each of these notes can be
played at a particular octave, which is the same note played at a higher pitch. If you look

142 Hour 8

NEW TERM

13 1634xCH08 11/13/99 11:05 AM Page 142

at Figure 8.1, you can see a set of standard piano keys. The white key on the far left is
the C key. This is also the lowest octave on the piano, or low C. The next keys in series
are shown, but notice that the thirteenth key to the right of low C is another C. This key
plays a pitch that is the same note as low C, just at a different octave.

DirectMusic—Interactive Music 143

8

FIGURE 8.1
Piano keys.

C D E F G A B C D E F G A B C D E

An octave is a particular range of normally eight pitches (12 distinct pitches
when counting the black keys on a keyboard). The difference between one of the

pitches in an octave and the same pitch one octave higher is that the pitch is exactly
twice the frequency of the pitch below it. There exists a large number of octaves,
although most musical instruments typically have a range of only three to five.

Notes also have a particular duration. This duration is measured in some fraction of a
measure. A whole note is a note that is played over the entire measure. A half note is half
as long as a whole note, or a note played during half of a measure. A quarter note is half
as long as a half note and so on, down to a thirty-second note. These notes are played for
the duration specified by their length. In a 4/4 measure, a quarter note is one beat in
duration. Because a half note is twice as long as a quarter note, it is played twice as long,
or for two beats.

Storing Compositions with the MIDI Format
Most of the musical editing software packages available today allows saving the musical
scores you create as a MIDI file. This file format contains all the necessary MIDI data to
be sent through the MIDI out port on your audio card, or through a software synthesizer,
like the Microsoft Synthesizer.

The MIDI format consists of a few basic messages. One of them deals with instrument
selections, which are accomplished through bank and instrument selection commands.
There are also pan messages that refer to which channel a note is played through (right
versus left) and volume messages that change the overall volume of a note.

With the number of MIDI music applications available, it is easy to create and save
MIDI files, which end with the extension .MID. They are also quite handy because the
Windows Media Player has the capability of playing them. Most audio cards also come
with some piece of software that allows them to load and play MIDI files. The
DirectMusic Producer application that comes with the DirectX 7.0 SDK also allows

NEW TERM

13 1634xCH08 11/13/99 11:05 AM Page 143

importing MIDI files. This allows you to create MIDI music using another editing
package and to import the entire MIDI song into Producer for easier musical editing
capability.

Multitrack Music Synthesis
Within a given section of a musical score are different tracks that make up the score
itself. Each track represents an individual instrument’s notes for the score. This allows
the composer to create the music that will be played by each instrument in its own track.
Can you imagine what it would be like trying to create a score with 10 instruments with-
out seeing each instrument in its own track?

Using MIDI creation software, such as DirectMusic Producer, you can create music that
consists of many hundreds of tracks. Each track is assigned to a particular channel. To
each channel, you assign an instrument. The tracks consist of the actual note information
that will be played by the attached instruments. Each note has a particular pitch, dura-
tion, and volume. By playing back all the tracks at the same time, the entire musical
piece can be heard. Think of it like a symphony orchestra. Each group of instruments
represents a different track. If you play all the tracks at the same time, the entire orches-
tra plays.

Ideally, you should at least create a rhythm track that uses either the General MIDI drum
kit or a percussion instrument. To this, you should add your melody track or tracks,
depending on the number of instruments you are using for the melody. Then add some
background accompaniment, perhaps using two or three tracks. How many tracks you
actually use in your musical pieces will obviously differ depending on the exact music
you are trying to create.

DirectMusic Architecture
DirectMusic includes several components that allow in-depth control over its features.
For the purposes of this hour, we are going to discuss IDirectMusicPerformance, as
well as some of its companion interfaces. It is through these interface music, when a par-
ticular music segment is played, and when different patterns should be played. We will
be using the companion interfaces in-depth later in the next hour. We will also briefly
discuss a few of them here.

The IDirectMusicPerformance Interface
The IDirectMusicPerformance interface is, like the rest of DirectX, based on COM. It
has the following list of methods:

144 Hour 8

13 1634xCH08 11/13/99 11:05 AM Page 144

• AddNotificationType()

• AddPort()

• AdjustTime()

• AllocPMsg()

• AssignPChannel()

• AssignPChannelBlock()

• CloseDown()

• DownloadInstrument()

• FreePMsg()

• GetBumperLength()

• GetGlobalParam()

• GetGraph()

• GetLatencyTime()

• GetNotificationPMsg()

• GetParam()

• GetPrepareTime()

• GetQueueTime()

• GetResolvedTime()

• GetSegmentState()

• GetTime()

• Init()

• Invalidate()

• IsPlaying()

• MIDIToMusic()

• MusicToMIDI()

• MusicToReferenceTime()

• PChannelInfo()

• PlaySegment()

• ReferenceToMusicTime()

• RemoveNotificationType()

• RemovePort()

• RhythmToTime()

DirectMusic—Interactive Music 145

8

13 1634xCH08 11/13/99 11:05 AM Page 145

• SendPMsg()

• SetBumperLength()

• SetGlobalParam()

• SetGraph()

• SetNotificationHandle()

• SetParam()

• Stop()

• TimeToRhythm()

• AddRef()

• QueryInterface()

• Release()

Like all DirectX interfaces, the last three functions: AddRef(), QueryInterface(), and
Release() are inherited from the IUknown interface.

We will be getting into the nitty-gritty of actually using the IDirectMusicPerformance
object in the next hour. The rest of this hour we will cover a lot of the concepts you will
need to know in order to create music in any of your work. Much of what you will need to
know to use DirectMusic lies in understanding some of the principles behind DirectMusic
and what its capabilities are. These will help during the next hour where we actually apply
what we are covering in this hour.

Interfaces Used with the Performance Object
For the IDirectMusicPerformance object to actually play the musical score, it relies on
several different DirectMusic interfaces for actually defining the various components of
the music. It might be helpful to think of these interfaces as different views of a musical
score.

The IDirectMusicSegment object represents the actual musical data that can be played
using the IDirectMusicPerformance object. The IDirectMusicSegment object has
methods that control the looping of the musical data, the timing of playback, event notifi-
cation, and contains some number of IDirectMusicTrack objects. This object, and its
collection of IDirectMusicTrack objects, contains all the data that will be used to play
the actual music. Also, because IDirectMusicSegment objects are what
IDirectMusicPerformance plays, implementing dynamic music involves creating seg-
ments at runtime.

146 Hour 8

13 1634xCH08 11/13/99 11:05 AM Page 146

The IDirectMusicTrack object is used to contain most of the actual data that makes up
IDirectMusicSegment objects. Each track object can contain different types of timed
data. This timed data might include tempo changes, band changes, other timed events,
and even note data. For example, one track object might contain a band selection mes-
sage, whereas another contains tempo change messages. The IDirectMusicTrack objects
usually contain most of the data contained within an IDirectMusicSegment object.

Putting Together the Band
To make our music, we must first determine who is going to play in our band. We might
decide that for a racing game, we want a lot of metal sounding instruments, lots of per-
cussion, and a racing electric guitar. If creating a fantasy role-playing game, perhaps a
harpsichord and a classic guitar should make up the band. For any music we want to cre-
ate, we must first decide which instruments we want to include in the musical score.

DirectMusic allows us to actually create different bands for use within the same musical
piece. Each band can consist of completely unique instruments or the same instruments,
and instruments from different MIDI instrument sets can all be used within the same
band. For example, you can use instruments from the General MIDI set and others from
Roland’s MIDI set, all within the same band.

Because of the capabilities of DLS, we can also create instruments out of virtually any
wave file we choose. For example, we could record a bird chirping as a wave file. Then
using the Wave Editor from within DirectMusic Producer, you can create a DLS instru-
ment from it. Try and be creative in your choices for instruments. Or, if you prefer, you
can stick to just the basic MIDI instruments included with DirectMusic.

DirectMusic can be configured to handle all the loading of the instruments for you. This
can be accomplished by configuring the IDirectMusicPerformance object to automati-
cally load necessary instruments. For those who want to have greater control of which
band instruments are loaded and when they are loaded, you can also load instruments
manually. DirectMusic gives you as little or as much control as you need.

Musical Templates
In a previous section, we discussed how IDirectMusicSegment objects are what the
IDirectMusicPerfomance object actually plays. But the segments we discussed then rep-
resented human composed pieces of music. Earlier, we also discussed using blocks or
patterns of music that could be rearranged into new pieces of music. This concept is
called dynamic music. We now turn our attention to how DirectMusic actually allows
you to implement this concept.

DirectMusic—Interactive Music 147

8

13 1634xCH08 11/13/99 11:05 AM Page 147

We begin with the template object. This object is really just a special kind of segment
object. The template object, however, is not like a normal segment object. We will not
use it directly to play music. Instead, we will use an interface called
IDirectMusicComposer to create an actual IDirectMusicSegment object from the tem-
plate object. It is this new segment object that will actually be played back by the perfor-
mance object. These new segments are derived from authored components, but are not
actually authored themselves.

During runtime, you can compose music by simply using the IDirectMusicComposer
interface itself. This is accomplished by loading music composition files and calling a
method of the IDirectMusicComposer object to create a new segment. For most pur-
poses, this will provide the most basic level of randomness to your music. Of course, the
actual amount of randomness is determined by the complexity of the initial composition
files you create.

For those individuals wanting more control over the actual musical segment being cre-
ated, you can change some of the parameters of the IDirectMusicSegment object created
by the composer object yourself. Because the composer object relies on two interfaces
for music composition, controlling them allows even greater control over the actual new
music segments that will be generated. The other two interfaces are
IDirectMusicChordMaps and IDirectMusicStyle.

The IDirectMusicStyle interface deals with the actual note patterns themselves. It can
be comprised of several different note patterns. IDirectMusicStyle can also have sev-
eral different bands that are associated, and by calling its different methods, these differ-
ent bands can be selected. Certain patterns of notes can also be ordered for playback at a
specific time, adding a little more control to the randomness of the entire template object.

The IDirectMusicChordMaps interface contains a list of available chords to be selected
by the template object. Depending on the overall feel of the musical piece, there might
be a large number of chords available for selection, or only one or two. The number of
available chords depends on how sophisticated you want to make your music.

To create the actual random music, IDirectMusicComposer relies on the original com-
poser to create the elements that will be put together to create the dynamic music. During
the course of playing the new segment, certain markers, called signposts, will tell
DirectMusic that another chord can be selected from a chordmap object. DirectMusic
might then select a new chord from the list of chords in the chordmap and transpose all
the following notes to the new chord. The transposed music will then play until another
marker is reached. DirectMusic will then randomly select another chord and transpose
again.

148 Hour 8

13 1634xCH08 11/13/99 11:05 AM Page 148

A signpost is a point within a style that indicates to DirectMusic that another
chord can be selected from the chord map.

Transposing changes the actual pitch value of a note or notes, usually because of
a specific chord chosen. By transposing music, the actual notes are changed to

new values. Because selecting a chord that does not coincide with the notes being played
would not sound appropriate, the notes are changed to values that do coincide with the
new chord.

The power of musical templates lies with the fact that because each chord is chosen at
random, the same pattern of music could sound completely different from performance
to performance without the composer making any changes to the actual score. The selec-
tion of chords and the transpositions of notes occur within DirectMusic and require no
programming on your part. This does, however, require some amount of setup by the
composer in the first place. A chord map must be created that gives DirectMusic the
chords to transpose the music by. Signposts must also be added to the patterns you create
to mark where a new chord might be chosen.

For really creative individuals, you can take advantage of the IDirectMusicComposer
interface described earlier to create dynamic music that includes a certain amount of
interactivity. You could take advantage of all the components, creating your own
IDirectMusicStyle and IDirectMusicChordMap interfaces, and create special short seg-
ments that are to be played in response to user events. You could then play these seg-
ments at the appropriate place in your game, even as another template is playing. This is
the power of musical templates and demonstrates creating dynamic and interactive music
that your players will love.

Summary
In this hour, you learned about the Microsoft Synthesizer and how it can provide consis-
tency to the music your game plays. By applying the concept of making interactive
music, you should have a greater understanding of how DirectMusic goes beyond being
just another song player. Adding the concept of dynamic music to your next game should
help make your music seem alive and spontaneous.

By covering some of the concepts of musical structure and music creation, you should
have some of the general knowledge required to create music of your own. This knowl-
edge will be invaluable when attempting to create your music for that next big game. In
addition to these concepts, we also discussed the concepts of creating multiple tracks of
music and incorporating MIDI files into our scores.

DirectMusic—Interactive Music 149

8
NEW TERM

NEW TERM

13 1634xCH08 11/13/99 11:05 AM Page 149

And of course, we also dug a little into the actual interfaces of DirectMusic. Looking at
the IDirectMusicPerformance interface and the interfaces used in musical composition
paves the way for actually implementing DirectMusic in your own projects. These con-
cepts should give you the foundation necessary to discuss the application of DirectMusic
in the next hour.

Q&A
Q Where does the IDirectMusicPerformance object come into play?

A The IDirectMusicPerformance object is the master controller of the musical
score. Think of it as the orchestra conductor. Although it doesn’t directly make the
actual sounds you hear as the music plays, it directs everything and makes sure that
everything plays on queue. We will cover how to apply the
IDirectMusicPerformance interface and the other interfaces required for making
music in more detail in the next hour.

Q Can I use DirectMusic to just play standard MIDI files, or do I have to create
my music using the DirectMusic Producer application mentioned earlier?

A The answer to this question is easy: Yes you can just play standard MIDI files. One
of the nice features of DirectMusic is that you could just create linear music scores
and simply use the IDirectMusicPerformance object as a MIDI player. This
shields you from having to stream the wave data directly to the audio card using
DirectSound yourself. For those who want to implement some of the more power-
ful capabilities of DirectMusic, you should use the DirectMusic Producer to create
patterns of music, which in turn allows you to create dynamic music. You might
also want to use another music editing package and just use Producer to bring all
the components together. We will cover using DirectMusic Producer in the next
hour.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and get you thinking about how to put your knowledge into practice. The
answers to the quiz are in Appendix A, “Answers.”

Quiz
1. What is the purpose of a synthesizer?

2. What are two of the primary features of the Microsoft Synthesizer?

150 Hour 8

13 1634xCH08 11/13/99 11:05 AM Page 150

3. How does DLS architecture allow the Microsoft Synthesizer to produce exact
music sounds on different audio cards?

4. What is meant by the phrase interactive music?

5. What is the purpose of the IDirectMusicPerformance object?

6. What kind of instruments can DirectMusic use?

7. What is the difference between a segment object and a template object?

8. What is an advantage of multi-track music synthesis?

9. What is the difference between interactive music and dynamic music?

Exercises
1. Be sure to check out the DirectMusic samples in the DirectX SDK. Most of the

samples are games that actually use a lot of other DirectX features, but now
incorporate DirectMusic. There is also the DirectMusic Shell application. This
application actually demonstrates some of the amazing interactive capabilities of
DirectMusic. After loading, it will begin playing music and will place a small
DirectX icon in your system tray. Click on the DirectX system tray icon and select
one of the other types of music. You will notice that it reacts to any activities you
perform, such as opening windows or typing into any window. You will be hearing
interactive music that is being created dynamically!

2. Try your hand at some music composition. You can use any of the music editing
software packages on the market today. Most of them should be able to output
standard MIDI files. You could also install the DirectMusic Producer application
from the DirectX 7.0 SDK. Using the Producer application might seem a little
complex at first, but if you find yourself a little lost, don’t worry. We will discuss
how to create music using DirectMusic Producer in the next hour.

DirectMusic—Interactive Music 151

8

13 1634xCH08 11/13/99 11:05 AM Page 151

13 1634xCH08 11/13/99 11:05 AM Page 152

HOUR 9
Applying DirectMusic

In the previous hour, we covered a lot of concepts about DirectMusic and
what it can offer you in terms of adding music to your games. In this hour,
we will discuss DirectMusic in much more detail, including actually imple-
menting the different interfaces of DirectMusic. We will also discuss using
the DirectMusic Producer application that comes with the DirectX 7 SDK to
create music.

The lesson in this hour begins with a quick tutorial of the DirectMusic
Producer application. This application allows you to compose music using a
number of different tools, and you will learn how to create compositions
using these editing tools. We then follow with the details of how to imple-
ment DirectMusic and its different interfaces to play music in your games.
We will also cover adding the music we will create during this hour to our
game.

In this hour, you will learn

• How to use the DirectMusic Producer application to create music

• How to implement the different interfaces of DirectMusic

• How to change music in response to game events

• How to add DirectMusic to our game

14 1634xCH09 11/13/99 11:22 AM Page 153

Using the DirectMusic Producer to Create a
Simple Score

To create the music you use in your games, you can use any kind of musical editing
package. For the purposes of the first part of this hour, we will be discussing how to use
the DirectMusic Producer application that comes with DirectX 7. This application typi-
cally installs into your Program Files directory, although you can change the installation
directory during the installation process.

The Producer application will allow us to create all the elements needed to create music
for our games. We will create most of these elements using one or more of the editors or
designers within Producer. Each editor has a specific purpose, but they are well inte-
grated, so you might not notice that you are using individual editors. It is not important
to remember the individual editor or designer names, only how to launch each of the edi-
tors to perform whatever editing is necessary. This will become clearer after using the
Producer application for a while.

We will begin by opening the DirectMusic Producer application. Selecting the Producer
application from Programs from the Start menu will launch the application. When the
application is running, it should have a window with a lot of toolbars, and the lower por-
tion of the display should be empty. We will first create our project. Select the New but-
ton from the toolbar. The window that appears should look like Figure 9.1. Select Project
from the list. After clicking OK, the New Project window appears. Enter a name for the
project like Chapter 9 as shown in Figure 9.2. We now have an open project that will
wind up containing all the elements for the music we are going to play.

154 Hour 9

FIGURE 9.1
Getting started with
DirectMusic Producer.

Selecting the Instruments
Now that we have created a new project, it is time to start putting together the elements
of our music. For any piece of music to be heard, we must choose the instruments that

FIGURE 9.2
Name the new project.

14 1634xCH09 11/13/99 11:22 AM Page 154

will play the music. When selecting our instruments, we can actually create more than
one band of instruments. This allows us to create two different bands with slightly differ-
ent sounding instruments. Then during playback, we can play the segment with the first
band, and then play the segment again with the second band.

To select our instruments we first create a new band object. This can be accomplished by
selecting the New button from the Producer toolbar. This will add a new category to the
Producer’s project tree called Band.bnp and will add an initial band object called Band1.
The first level in the hierarchy is important because it indicates the file in which this
band, and subsequent band objects added to this file, will be located. The second level in
the hierarchy is the name of our band. You can rename the band to anything you like, and
you can change the name of the band file as well.

Now we must actually assign some instruments to the band object. We do this within the
Band Editor. To bring up the Band Editor, simply double-click on the Band1 object we
just created. You should now see the Band Editor window. Within the editor window is a
list of PChannels on the left. Double-click on the first PChannel in the list and the
PChannel Properties window will appear.

PChannel is an acronym for Performance Channel. A Performance Channel con-
tains all the information for a particular instrument. This includes MIDI instru-

ment selections, volume, pan, octave, and transposition values.

Applying DirectMusic 155

9

By looking at Figure 9.3, you can see that our band has 16 instruments.
Remember from the discussion in the last hour that we could have virtually
an unlimited number of instruments. So why are only 16 listed here?
Because we can add additional instruments to this band if needed; in fact,
as many as 999 of them. For our purposes, however, 16 will be more than
enough.

FIGURE 9.3
Selecting instruments.

NEW TERM

14 1634xCH09 11/13/99 11:22 AM Page 155

To actually select a specific instrument for a given PChannel, we must check off the
Instrument check box. We can then select an instrument by pressing on the button just to
the right of the check box. For the first instrument in our band, we will select the first
piano, Piano 1, from the list of piano instruments. For the second instrument, let’s pick
Steel Guitar from the list of guitar instruments.

We will also need some instruments for creating a rhythm track. Fortunately for us, a
PChannel has been set aside for us to use as a rhythm track. If you look at Figure 9.3,
you can see that PChannel ten already has Standard as an instrument. This is because of
the fact that, by default, MIDI uses channel ten for a drum kit. To take advantage of this,
turn on the instrument for PChannel ten. Open PChannel ten, and check off the
Instrument check box. You can also select one of the other seven drum kits if you want
by clicking on the button marked Standard.

Now that we have selected our instruments, a few more things must be touched on. Until
now we only discussed the left side of the Band Editor. If you look at the right side, you
will notice a grid with some numbers in it. This grid actually has more than just a pretty
aesthetic purpose. The position of the numbers on the grid indicates some of the proper-
ties of the instruments. The left and right halves of the grid represent the pan of the
instrument. If the number is positioned on the left side of the grid, the instrument will be
played more from the left speaker than from the right. The further left the number, the
more the left speaker plays than the right. The reverse is also true as you move the num-
ber right. The top and bottom halves of the grid represent the volume of the instrument.
Moving an instrument to the top half raises the volume of that instrument. The further up
the number, the louder the instrument will be played. You can also adjust the volume and
pan properties from the PChannel Properties window where you selected the instruments
initially.

Creating a Rhythm
Now that we have determined which instruments we are going to use, it is time to start
creating the actual music we are going to be playing. The most basic element of any
piece of music is usually rhythm. Most people think of rhythm as being created by a
drum or other percussion instrument. However, other instruments can set the rhythm of
the music such a bass guitar or other instrument playing regularly timed notes.
Regardless of the actual instrument or instruments creating the rhythm, it usually sets the
overall beat of the music.

To begin entering in music, we will need a track to enter in the note data. As we covered
in the last hour, a segment object is comprised of one or more tracks of timed data. So
start by creating a new segment object. Select the New button from the toolbar and select

156 Hour 9

14 1634xCH09 11/13/99 11:22 AM Page 156

Segment from the list. This will create a new segment file and a single segment object.
Now we will need to open the segment object to enter our rhythm notes. By double-
clicking on the segment object, you can open the segment editor, which is shown in
Figure 9.4. This editor allows modifying the parameters about the segment itself as well
as adding in tracks of musical data. We will only need twelve measures for our small
composition, so we will need to change the segment to be only twelve measures, or bars
long. Right-click on the segment object itself and select Properties. When the Segment
Properties window appears, change the length to twelve measures, or bars.

Applying DirectMusic 157

9

FIGURE 9.4
Creating a segment.

To enter our rhythm track, we will need a note track. To create a note track, right-click
on the editor window and select Add Track to open the Add New Tracks window. From
this window, select Sequence Track and then click the OK button. A sequence track is
created that contains a part for the first instrument. Along the top, a series of numbers are
spaced apart evenly. These numbers represent the measures for the sequence track, which
can be seen in Figure 9.4.

Now that we have a sequence track, we must actually add a sequence for the PChannel
we are using for our rhythm. We assigned the standard drum kit to the number ten
PChannel earlier, so right-click on the sequence track area and select Add New Part.
When the Add New Part window appears, change the PChannel box to ten and click the
Create New Part button. This should add a sequence for the number ten PChannel.

14 1634xCH09 11/13/99 11:22 AM Page 157

On the far right side of the sequence area is a button that minimizes and maximizes the
sequence window (see Figure 9.5). Click this button to display the sequence in its maxi-
mized state. On the left side of the window are what appear to be the keys of a piano,
only the keys are flipped on their sides and some words are written all over them. The
words are actually the different components of the drum kit. Scroll up or down the list of
instruments using the scrollbar to the right of the piano keys until you locate the instru-
ment Snare Drum 1. Right-click on the sequence area to the right, select Snap To from
the drop-down list and then select Beat. This will align any notes that we add to a single
beat of the measure.

158 Hour 9

FIGURE 9.5
Putting melody in the
segment.

We are now ready to add the actual musical notes. Start by placing your cursor in the first
column just to the right of the Snare Drum 1 piano key. Either press the insert key on the
keyboard, or right-click and select Insert Note. You might find it easier to use the key-
board’s arrow keys to move around the measures, and through the instruments or notes.
After you have entered the first note, repeat the process for each beat for the next twelve
measures. This creates a one beat note for each beat in the entire segment. You could also
repeat the same note creation step for the Kick Drum 1. Now that you have actually cre-
ated some kind of music, let’s listen to it! From the Transport Controls toolbar, select the
green Play From Start button to play the segment.

14 1634xCH09 11/13/99 11:22 AM Page 158

Making a Simple Melody
Now that we have some music to play, we must add some kind of melody to it. For expe-
dience, we are going to create a simple melody for “Twinkle, Twinkle, Little Star.” This
process is very similar to creating the rhythm track, except that we are using a regular
instrument, rather than a drum kit. Normally we would have to create a sequence for the
instrument, but because the sequence for PChannel number one was created by default,
we only need to maximize sequence one’s window. You should also change the Snap To
for the sequence to Beat like you did before.

Notice that the piano keys on the left side only have markers for the different octaves of
C. This will be your guide for which note you are actually creating. We must now create
the actual notes so that the entire song is comprised of quarter notes and half notes. The
half notes are positioned at the last half of every second measure. The note progression
for the song is C, G, A, G, F, E, D, C, G, F, E, D, G, F, E, D, C, G, A, G, F, E, D, C.
When creating the half notes, you can change the length of any note, by left-clicking on
the right edge of the note and dragging it left until it takes up two whole beats. Look at
Figure 9.5 to get an idea of what the sequences should look like at this point. After you
have entered all the notes, try playing your new segment again. It should sound like
“Twinkle Twinkle Little Star.” You now have a completed piece of music that we could
load into DirectMusic and play through a performance object.

Creating Musical Templates
Now we actually have a piece of music that we can play. The segment object contains
note data for the three instruments, one being the standard drum kit, and we have a band
file that specifies the information for each of those instruments. In the previous hour, we
discussed using template objects to create music that would be created dynamically at
runtime. We will now create a simple musical template to show what is possible using
Producer. Because a lot of capabilities of template objects exist and only those who have
a strong music composition background will be able to use them all, we will only be
brushing the surface of what is possible through template objects.

First, create a new template object. We will also need to create a style object as well as a
chordmap object. The template object uses the note patterns and band objects that are
contained within the style object to actually create the music. Notice that the style object
has a number of children objects, namely band, motif, and pattern objects. We will only
concern ourselves with the pattern objects, although you should experiment with creating
multiple band objects and perhaps creating motifs on your own.

To provide some musical notes to be played by the template, we will import one of the
MIDI files from those that come with Windows. Right-click on the patterns object and

Applying DirectMusic 159

9

14 1634xCH09 11/13/99 11:22 AM Page 159

select Import MIDI File as Pattern. From the window that appears, change to the media
directory under your Windows directory. Select any of the MIDI files there, such as the
Bach’s Brandenburg Concerto No. 3. When you have selected the MIDI file, Producer
will import the music as a pattern, and will in most cases create a band file as well. The
band file represents the instruments that were selected in the original MIDI file. You can
then delete the default Band1 and Pattern1 objects that were created when you created
the style initially.

Now we must create a couple of chords for the template object to use for transpositions
of the MIDI pattern we just created. Open the chordmap object by double-clicking on the
Chordmap1 object. We will use the area on the right to create our chords. First, under the
SP column, left-click on the word New. This will open the Signpost Chord Scale/
Inversion Properties window. This window might seem a little confusing at first, but it
can be relatively simple to create a different chord. The first box you see is the base note
of the chord; we can change our chord by simply raising or lowering this base note. For
our first chord, we will leave it at 2C, so simply close the window. There should now be
a line under the column headers, with 2 C M under the SP column. Now we will need to
indicate at what signpost markers this chord could be selected. The signpost markers will
be created from within the template object, but we must indicate here which chords are
usable at a given signpost. Ideally, you will want a number of chords available at each
signpost because that allows for greater randomness. So let’s set at which signposts the
2CM chord can be used. Left-click in the boxes to the right of the chord, marked with
the numbers one through five. Then select the word New under the SP column again.
This time change the chord’s base note from 2C to 2E and close the window. As with the
2CM chord, check off the one through 5 boxes to the left of the 2EM chord. Finally, cre-
ate one more chord as 2A and check off the same five boxes once more. Your chordmap
should look like Figure 9.6.

160 Hour 9

There are a lot of little elements to consider when creating a musical tem-
plate, and unfortunately there are too many to cover here. You should try
experimenting on your own because changing just a single chord at a sign-
post can have a significant impact on the way your music sounds. This repre-
sents a good demonstration of the power of designing music with the
Producer application. Create once and use many times is the general philos-
ophy here.

14 1634xCH09 11/13/99 11:22 AM Page 160

FIGURE 9.6
Editing the chordmap.

Applying DirectMusic 161

9

The chords have been created, but we have one final step to actually hear music that is
dynamic. We must create the signposts within the template object that indicate where a
new chord can be selected. Open the template object by double-clicking on it. There
should be a single track called a Signpost Track. Because we attached our chords to five
signposts, we will assign five signposts to our template. In the signpost track, right-click
in the first measure and select Insert. The Signpost Group Properties window will appear.
The combo box should already be set to one, so simply close the window to create the
signpost. Now we will want to create another signpost and give it the group number one,
so right-click in the fifth measure of the signpost track. Select the number two from the
combo box and close the window. Now create three more signposts for groups three, four
and five, at measures nine, thirteen, and seventeen. You can also reuse a particular sign-
post group again, so create another signpost at measure nineteen and set it to group three.

Now to create a random set of chords, select the little musical note button next to the
track’s title. A new Chord Track should be created, and chords should now be listed in
the track. Try playing the template. Notice how the music changes when it gets to a new
chord. This is not magic. Some musical pieces change chords during their play. In fact,
you could add a chord track to your own segment object and accomplish what we just set
up with one exception: by clicking on the little musical note button again, the chords in
the chord track change. This process will be performed automatically when creating a
segment from a template object at runtime. We’ve covered a lot so far, but now we have a
regular segment we could use and a template object, which we will use later to create a
new segment for our game during runtime.

14 1634xCH09 11/13/99 11:22 AM Page 161

Saving the Performance
When you are satisfied with your music, you can simply select the Save All button on the
toolbar, and all your music compositions will be saved. You can also save at any time
during creation, and you might want to consider doing just that, for safety’s sake. This
saving process saves your compositions into the directory that you specified when we
created the project in the beginning.

There is also a detail about saving the performance that you should consider. For each of
the composition files, there are design and runtime file locations. These are used to sepa-
rate the design-time files and runtime files, respectively. When you are finished with your
compositions, you will want to create a runtime version of your files for inclusion in
your game. The reason is elements exist within the initial files that are used by the
Producer application. By saving your compositions as runtime files, you can reduce the
overall size and create the files that DirectMusic will use to play your music. Saving the
runtime versions is as simple as selecting either Runtime Save As or Runtime Save All
from the File Menu. You can then include the saved files with your application.

Setting Up DirectMusic
Now that we have some musical material created, it is time to begin digging into the
innards of DirectMusic. In the last hour you learned about some of the interfaces of
DirectMusic. The main interface we are going to use is IDirectMusicPerformance. This
interface is the object that is going to play our music for us. We will also cover how to
use other interfaces, such as those used to load and create music during runtime.

Initializing the Performance Interface
To begin our journey into the nitty-gritty of DirectMusic, we must first obtain a pointer
to an IDirectMusicPerformance interface. You can accomplish this with a call to the
COM function CoCreateInstance. An example of doing this follows:

162 Hour 9

It is possible to add a signpost track to a regular segment object. Doing so
changes the segment to a template object, but will not change its name.
This will mean that you will have to use the IDirectMusicComposer interface
to create a new segment from this segment at runtime. This can be handy
when you have a particularly long segment, or perhaps one that was
imported from a MIDI file, and you want to add a little bit of dynamics to
the segment. It will still require a chordmap and a style object just like a
regular template object.

14 1634xCH09 11/13/99 11:22 AM Page 162

HRESULT hresult;
LPDIRECTMUSICPERFORMANCE lpDirectMusicPerformance;

hresult = CoCreateInstance(CLSID_DirectMusicPerformance,
NULL, CLSCTX_INPROC_SERVER,
IID_IDirectMusicPerformance, (LPVOID*)&lpDirectMusicPerformance);

if (FAILED(hresult))
HandleFailure();

After creating a reference and obtaining an interface, we are ready to begin setting up
our IDirectMusicPerformance COM object. Before we begin using our new perfor-
mance object, we will need to initialize it. This must be performed before any other
method is called. Initialization can be accomplished through a call to the Init() method.

HRESULT Init(IDirectMusic** ppDirectMusic,
LPDIRECTSOUND pDirectSound, HWND hWnd);

Notice that the first parameter passed to the Init method is the address of a reference to
an IDirectMusic interface. For most purposes, you can simply leave this parameter as
NULL. The IDirectMusicPerformance object will then create its own internal
IDirectMusic interface object. The IDirectMusicPerformance object uses the
IDirectMusic object to create and manage ports and buffers and to manage the master
clock.

If you want, you can retrieve a reference to the IDirectMusic interface by passing in the
address of a pointer to an IDirectMusic object. IDirectMusicPerformance will then
populate your pointer with a reference to the IDirectMusic object it created. This can be
accomplished by the following:

IDirectMusic *pDirectMusic;
HRESULT Init(IDirectMusic** &pDirectMusic,
LPDIRECTSOUND pDirectSound, HWND hWnd);

You can also initialize your own IDirectMusic object before calling Init, and simply
pass the address of the pointer to that object to the Init method. To obtain a reference to
an IDirectMusic interface, simply call the CoCreateInstance function.

HRESULT hresult;
LPDIRECTMUSIC lpDirectMusic;

hresult = CoCreateInstance(CLSID_DirectMusic, NULL, CLSCTX_INPROC_SERVER,
IID_IDirectMusic, (LPVOID*)&lpDirectMusic);

if (FAILED(hresult))
HandleFailure();

Applying DirectMusic 163

9

14 1634xCH09 11/13/99 11:22 AM Page 163

The second parameter passed to the Init method shown previously is a pointer to a
DirectSound object. Like the IDirectMusic object, you could pass in an existing refer-
ence to a DirectSound object. For most purposes, we will have no need to pass in a
DirectSound object, so simply pass in the value of NULL. If you have already initialized a
DirectSound object to play sounds for the existing window, you can pass in the reference
to that object to the Init method.

The third parameter is a handle to the window with which the DirectSound object will be
associated. If you are passing your own pointer to a DirectSound object to the Init
method, you should pass in the value of NULL. Otherwise, pass in the handle to the win-
dow associated with the DirectSound object. If you are going to let the
IDirectMusicPerformance object obtain its own DirectSound object and want to use the
current window, simply pass in a value of NULL.

Loading Composition Files
After Init has been called, the IDirectMusicPerformance object is ready to be used. To
play any music at all, however, we must load some music data so that the
IDirectMusicPerformance object has something to play. Thankfully for us, DirectMusic
uses a simple method for loading composition files, and this method is very similar for
all the different composition files being loaded. Loading is provided by an interface that
we haven’t discussed yet called the IDirectMusicLoader.

Some of the composition files we will be loading contain references to other composition
files. When we created our style object using the Producer application earlier, we created
a band object and a pattern object. These objects were saved in the file with the style
object. Fortunately for us, the IDirectMusicLoader interface will handle the creation of
the band and pattern objects for us transparently. We only need to load the style object
itself, and when the references to the band and pattern objects occurs, the
IDirectMusicLoader interface creates them as well. This transparent loading holds true
for any objects referenced by either segment or template objects.

164 Hour 9

If you intend to use a synthesizer different than the default one, you will
need to either create your own IDirectMusic object or retrieve a reference
to the one created by IDirectMusicPerformance. Using the reference to the
IDirectMusic object enables you to make changes to the default synthe-
sizer, as well as make changes to the master clock. Because the default syn-
thesizer is the synthesizer we want—that is, the Microsoft Synthesizer—we
will not be using the IDirectMusic interface directly.

14 1634xCH09 11/13/99 11:22 AM Page 164

To load a file, we must first obtain a reference to an IDirectMusicLoader interface. The
IDirectMusicLoader object will handle the actual loading of the data for you. The
IDirectMusicLoader object can also cache the loaded objects, so additional load calls
will only retrieve the already loaded object and not cause unnecessary loading. For this
reason, you should consider creating a global IDirectMusicLoader object that you use to
load all your files, and then free the reference when all loading is complete. A reference
to an IDirectMusicLoader interface can be obtained by the following code:

IDirectMusicLoader* m_pLoader;
HRESULT hr = CoCreateInstance(CLSID_DirectMusicLoader, NULL, CLSCTX_INPROC,

IID_IDirectMusicLoader, (void**)&m_pLoader);

For most of the operations with the DirectX SDK, structures are used to set some of the
operating parameters of the methods that are called. The IDirectMusicLoader interface
uses one of these structures, called DMUS_OBJECTDESC, to indicate what type of file should
be loaded and how it should be loaded. This structure allows setting things like the name
of the composition file to load, the path that the file should be loaded from, and the type
of file being loaded. We will be using the IDirectMusicLoader interface to load the seg-
ment, template, chordmap and style objects we created earlier with the Producer applica-
tion.

We can load the segment object we created earlier using the IDirectMusicLoader inter-
face. We simply populate the DMUS_OBJECTDESC structure and then call the GetObject
method. This can be accomplished by a wrapper function like this:

void myLoadSegment(IDirectMusicSegment **ppIDMSegment)
{

IDirectMusicLoader *pIDMLoader; // Loader interface.
// You could alternatively use a glogal loader object
CoCreateInstance(CLSID_DirectMusicLoader,NULL, CLSCTX_INPROC,
IID_IDirectMusicLoader, (void **) &pIDMLoader);
if (pIDMLoader)
{

DMUS_OBJECTDESC Desc;

// Start by initializing Desc with the file name and
// class GUID for the band object.

wcscpy(Desc.wszFileName, L”C:\\MyMusic\\Work\\Segment1.sgp”);
Desc.guidClass = CLSID_DirectMusicSegment;
Desc.dwSize = sizeof (DMUS_OBJECTDESC);

// Since we are including the Class ID and the file name
// and full path to the file, we need to inform the Loader object

Desc.dwValidData = DMUS_OBJ_CLASS |
DMUS_OBJ_FILENAME | DMUS_OBJ_FULLPATH;

pIDMLoader->GetObject(&Desc, IID_IDirectMusicSegment,

Applying DirectMusic 165

9

14 1634xCH09 11/13/99 11:22 AM Page 165

(void **) ppIDMSegment);
pIDMLoader->Release();

}
}

We now have a reference to the loaded segment object. We will use this reference later to
play the actual segment. By changing the Class ID to that of whatever object you want to
load and providing the address of a pointer to the same object, you can load any of the
files that are created by the Producer application.

Establishing the Instruments
When creating your compositions using the Producer application, you set up the instru-
ments that you will use to play your music in band objects. Whenever you load a seg-
ment or style file, a default band object is created for it. This band file will represent the
first band file that existed in the project when you created it.

The band objects we will be using can be loaded in a number of different ways. Let’s
look at loading them from a separate file first because this process is very similar to
loading other objects and will provide a reference when loading other objects.

void myLoadBand(IDirectMusicBand **ppIDMBand)
{

IDirectMusicLoader *pIDMLoader; // Loader interface.
// You could alternatively use a glogal loader object
CoCreateInstance(CLSID_DirectMusicLoader,NULL, CLSCTX_INPROC,
IID_IDirectMusicLoader, (void **) &pIDMLoader);
if (pIDMLoader)
{

DMUS_OBJECTDESC Desc;

// Start by initializing Desc with the file name and
// class GUID for the band object.

wcscpy(Desc.wszFileName, L”C:\\MyMusic\\Work\\Band1.bnp”);
Desc.guidClass = CLSID_DirectMusicBand;
Desc.dwSize = sizeof (DMUS_OBJECTDESC);

// Since we are including the Class ID and the file name
// and full path to the file, we need to inform the Loader object

Desc.dwValidData = DMUS_OBJ_CLASS |
DMUS_OBJ_FILENAME | DMUS_OBJ_FULLPATH;

pIDMLoader->GetObject(&Desc, IID_IDirectMusicBand,
(void **) ppIDMBand);

pIDMLoader->Release();
}

}

166 Hour 9

14 1634xCH09 11/13/99 11:22 AM Page 166

If you look at the preceding GetObject call, you will see that we pass in the address of a
reference to the band object as a parameter. This method looks similar to the method
used to load the segment in the previous section. When the function returns, the band
object reference should contain a valid band object. We will use this object to create and
play a new segment.

/* Automatic downloading should be turned on,
and a reference to the loaded band object retrieved. */

HRESULT myPlayBand(IDirectMusicBand *pIDMBand, // Pointer to band object
IDirectMusicPerformance *pIDMPerf, // Performance to use band
REFERENCE_TIME rfTime, // Time to play the band at
DWORD dwFlags) // Performance flags

{
IDirectMusicSegment *pIDMSegment; // Used to cue the band change
HRESULT hResult = pIDMBand->CreateSegment(&pIDMSegment);
if (SUCCEEDED(hResult))
{

hResult = pIDMPerf->PlaySegment(pIDMSegment,
dwFlags | DMUS_SEGF_SECONDARY,
rfTime, NULL);

pIDMSegment->Release();
}
return hResult;

}

Applying DirectMusic 167

9

If automatic downloading isn’t enabled, it will be necessary to download the
instrument’s wave data to the IDirectMusic port. This can be accomplished
with a call to the Download method of the IDirectMusicBand object. If auto-
matic downloading isn’t enabled and the data isn’t downloaded, you will
not hear any notes played by that band.

The preceding code creates what is called a secondary segment object. Secondary seg-
ment objects are segment objects that perform operations just like a primary segment,
except that they usually have a smaller purpose. For example, a secondary segment can
be used to cue messages such as band changes, tempo changes, instrument solos, and
small specific note pieces called motifs. Although only a single primary segment can be
playing at once, many secondary segments can be played at any time, and are typically
used to enhance or change the music playing from the primary segment.

A motif is a short pattern of music that is usually played over a primary segment.NEW TERM

14 1634xCH09 11/13/99 11:22 AM Page 167

As you look at the preceding code, notice that the CreateSegment method of the band
object is called. The newly created segment is then played by the performance using the
PlaySegment method of the performance object. Because the segment is cued immedi-
ately, it is no longer needed and can be released. This methodology is used to cue a num-
ber of different changes to the music, and we will discuss it a little further in a few
moments.

When we saved the performance earlier, the band object was saved as well, and it is
located in a separate file. As mentioned earlier, when loading a segment or style that con-
tains references to bands or other objects, those objects are in turn loaded with the seg-
ment or style automatically. It might be necessary in some cases to obtain references to
those band objects to alter properties about them. This can be accomplished by retrieving
a reference to the band object directly.

The IDirectMusicLoader interface uses caching by default, so a direct loading of the
band object isn’t necessary because a reference to the already loaded band object can be
returned. You could either load the band object directly, which results in an immediate
return of the reference to the already cached object, or if the band is part of a style
object, simply retrieve the band object from the style object that contains it. This is
accomplished through a call to the GetBand method of the IDirectMusicStyle interface.

hr = pStyle->GetBand(bstrBandName, &pIDMBand);

This will retrieve the band from the style so that you could use the band object else-
where. You could, for example, create a segment from the band object and play the new
segment to change the band that is being used by the currently playing segment. You
might also need the band object reference to download the instrument data to the port
using the Download method of the IDirectMusicBand object.

DirectMusic Playback
Until now, we have managed to create a musical composition and have loaded the related
composition files into memory. Now we must play the music to hear it. Depending on
the complexity of the music you want to create, you will need to determine when will be
the appropriate time within your game’s loading routines to load the music. You could,
for example, create your DirectMusic objects very early and use them to play an opening
segment as you load the opening components of your game. Then, you could play
another segment while the user navigates any game menus. When game play has begun,
you could play yet another segment, or perhaps a template.

168 Hour 9

14 1634xCH09 11/13/99 11:22 AM Page 168

Playing Segments
We now arrive at probably the most important step in this lesson, and one I am sure you
have been looking forward to. We now actually play the music we have created and
loaded previously. As we discussed in the last hour, the IDirectMusicPerformance
object is responsible for playing our musical pieces. We will start with how to a play a
segment object.

DMUS_OBJECTDESC Desc;
HRESULT hr;
IDirectMusicSegment* pIDMSegment;

Desc.dwSize = sizeof(DMUS_OBJECTDESC);
Desc.guidClass = CLSID_DirectMusicSegment;
wcscpy(Desc.wszFileName, L”Segment1.sgt”);
Desc.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME | DMUS_OBJ_FULLPATH;
lpIDMLoader->GetObject(&Desc, IID_IDirectMusicSegment2, (void**) pIDMSegment);

hr = pIDMPerf->PlaySegment(pIDMSegment, 0, 0, NULL);

The preceding code loads a primary segment, and then plays the segment through the
performance object. The first parameter takes a pointer to the segment object to be
played, the second parameter contains any flags associated with the segment, the third
indicates when to play the segment, and the fourth parameter takes the address of a
pointer to a IDirectMusicSegmentState object. We pass in the segment we loaded, and
set the flag parameter to zero to indicate that it should play as a primary segment. For the
time parameter, we enter zero to indicate that it should occur whenever the next available
start time would be. If another primary segment is still playing, it will stop and this seg-
ment will begin playing. The last parameter is the address to a reference of an
IDirectMusicSegmentState object. This object can be used to retrieve some parameters
about the currently playing music. For our purposes, we do not need the reference, so we
simply pass in NULL.

Real-Time Changes to Tempo and Structure
We have the ability to make a number of different changes to the overall structure of our
music as it is playing. We will start with a very simple change that you will probably use
often. We will adjust the overall tempo of the playing segment. When we created the seg-
ment initially using the Producer application, we created a tempo track that set the initial
tempo to 120 beats per minute. Let’s start by adjusting the tempo of the currently playing
segment to 140 beats per minute.

To make changes to the currently playing music, we will need to feed different messages
into the performance object. When received by the performance object, the messages will

Applying DirectMusic 169

9

14 1634xCH09 11/13/99 11:22 AM Page 169

be either processed immediately, or cued for the time you specify. The following shows
how to create one of these messages, a tempo message, and how to send it to a perfor-
mance object.

// We will need to disable the tempo track in the segment
// that is playing, so that it doesn’t reset the tempo on us

// Disable tempo track in segment so that it does not reset tempo
lpIDMSegment->SetParam(GUID_DisableTempo, 0xFFFF,0,0, NULL);

DMUS_TEMPO_PMSG* pTempo;
if(SUCCEEDED(lpIDMPerformance->AllocPMsg(sizeof(DMUS_TEMPO_PMSG),

(DMUS_PMSG**)&pTempo)))
{

// Queue tempo event
ZeroMemory(pTempo, sizeof(DMUS_TEMPO_PMSG));
pTempo->dwSize = sizeof(DMUS_TEMPO_PMSG);
pTempo->dblTempo = DEFAULT_TEMPO;
pTempo->dwFlags = DMUS_PMSGF_REFTIME;
pTempo->dwType = DMUS_PMSGT_TEMPO;
lpIDMPerformance->SendPMsg((DMUS_PMSG*)pTempo);

}

We can also change our music using a template object. During runtime, we can create a
new segment from the template object, additionally selecting the associated style and
chordmap objects we want to use. We created one style and one chordmap object earlier
and we will use those here. We are, however, going to need a reference to an
IDirectMusicComposer interface. As you might recall from our discussion last hour, the
composer object is used to create the actual segment we will play. You can create a refer-
ence to the IDirectMusicComposer object the same way you create an
IDirectMusicPerformance object.

IDirectMusicComposer* m_pIDMComposer;
HRESULT hr = CoCreateInstance(CLSID_DirectMusicComposer, NULL, CLSCTX_INPROC,

IID_IDirectMusicComposer, (void**)&m_pIDMComposer);

When we have this reference, we can use the ComposeSegmentFromTemplate method to
create a new segment object based on the template. The following code demonstrates
creating the new segment.

// The style, chordmap and template objects are assumed to have been
// loaded previous using a loader object.
IDirectMusicSegment **ppIDMSegment;

HRESULT ComposeSegmentFromTemplate(pIDMStyle, pIDMTempSeg, w_Activity,
pIDMChordMap, ppIDMSegment);

170 Hour 9

14 1634xCH09 11/13/99 11:22 AM Page 170

The preceding ComposeSegmentFromTemplate method takes in a style, chordmap, tem-
plate object, and an activity value and populates the reference to the segment object.
Because we included a reference to the style and chordmap objects when we created our
template earlier, we can simply pass nulls in for those values. The activity parameter rep-
resents the amount of harmonic activity that DirectMusic should apply to the specified
template. The valid range is between zero and three. The lower the number, the more the
chords will fluctuate, the higher the number, the less they will fluctuate. The segment
reference we passed in is now a new copy of our template that has been created and can
now be played through the performance object.

Adding DirectMusic to Our Game
Now we must apply what we have covered here to the game that we have been develop-
ing. There are a number of additional objects that we will need, so we begin by adding
references to all the objects as seen in Listing 9.1.

LISTING 9.1 The Variable Declarations, Defines, and Other Values

1: #include <dmusici.h>
2: //------ DirectMusic Objects ------//
3: IDirectMusicPerformance *lpIDMPerformance;
4: IDirectMusicLoader *lpIDMLoader;
5: IDirectMusicComposer *lpIDMComposer;
6: IDirectMusicSegment *lpIDMSegment;
7: IDirectMusicSegment *lpIDMTemplate;
8: IDirectMusicStyle *lpIDMStyle;
9: IDirectMusicChordMap *lpIDMChordMap;
10:
11: //------ Define Stand-Still Tempo ------//
12: #define DEFAULT_TEMPO 60
13:
14: //------ Used to watch speed for tempo changes to music -------//
15: BOOL fMoveChange=TRUE; // Used to determine if tempo change needed.
16:
17: //------ Error Messages ------//
18: const char Err_DMPerfCreate[] =

➥”Error creating DirectMusicPerformance object”;
19: const char Err_DMLoadCreate[] =

➥”Error creating DirectMusicLoader object”;
20: const char Err_DMCompCreate[] =

➥”Error creating DirectMusicComposer object”;
21: const char Err_DMLoadMusic[] = “Error loading music”;

Applying DirectMusic 171

9

14 1634xCH09 11/13/99 11:22 AM Page 171

Creating the Interfaces
In Listing 9.2, the code creates the IDirectMusicPerformance, IDirectMusicLoader,
and IDirectMusicComposer objects. From the references that were created, we can begin
initializing the DirectMusic objects we will need. We begin by calling the Init method
of the performance object and then after turning on the automatic downloading of instru-
ment data, we ensure that a default port is created. We then call the routine to load the
composition files, and begin playing the music. When the music is playing, we immedi-
ately adjust the tempo of the music to the default tempo, which is set for sixty beats a
minute.

LISTING 9.2 The Changes to the Init() Function That Create the Necessary
DirectMusic Components and Start the Music Playing

1: // Create the DM objects
2: CoInitialize(NULL);
3:
4: dmrval = CoCreateInstance(CLSID_DirectMusicPerformance,

NULL, CLSCTX_INPROC_SERVER,
5: IID_IDirectMusicPerformance, (LPVOID*)&lpIDMPerformance);
6: if (FAILED(dmrval))
7: {
8: ErrStr = Err_DMPerfCreate;
9: return FALSE;
10: }
11:
12: dmrval = CoCreateInstance(CLSID_DirectMusicLoader, NULL, CLSCTX_INPROC,
13: IID_IDirectMusicLoader, (LPVOID*)&lpIDMLoader);
14: if (FAILED(dmrval))
15: {
16: ErrStr = Err_DMLoadCreate;
17: return FALSE;
18: }
19:
20: dmrval = CoCreateInstance(CLSID_DirectMusicComposer, NULL, CLSCTX_INPROC,
21: IID_IDirectMusicComposer, (LPVOID*)&lpIDMComposer);
22: if (FAILED(dmrval))
23: {
24: ErrStr = Err_DMCompCreate;
25: return FALSE;
26: }
27:
28: // Initialize the Performance object
29: dmrval = lpIDMPerformance->Init(NULL, NULL, NULL);
30:
31: // Turn on automatic downloading of instruments
32: BOOL fAutoDownload = TRUE;
33: lpIDMPerformance->SetGlobalParam(GUID_PerfAutoDownload, &fAutoDownload,

➥sizeof(BOOL));

172 Hour 9

14 1634xCH09 11/13/99 11:22 AM Page 172

34:
35: // Tell the Performance to create the default port
36: lpIDMPerformance->AddPort(NULL);
37:
38: // Load the DM musical data
39: if (!load_music())
40: {
41: ErrStr = Err_DMLoadMusic;
42: return FALSE;
43: }
44:
45: // Since we want the music in the background, start playing the music
46: lpIDMPerformance->PlaySegment(lpIDMSegment, 0, 0, NULL);
47:
48:
49: // Disable tempo track in segment so that it does not reset tempo
50: lpIDMSegment->SetParam(GUID_DisableTempo, 0xFFFF,0,0, NULL);
51:
52: DMUS_TEMPO_PMSG* pTempo;
53: if(SUCCEEDED(lpIDMPerformance->AllocPMsg(sizeof(DMUS_TEMPO_PMSG),

➥(DMUS_PMSG**)&pTempo)))
54: {
55: // Queue tempo event
56: ZeroMemory(pTempo, sizeof(DMUS_TEMPO_PMSG));
57: pTempo->dwSize = sizeof(DMUS_TEMPO_PMSG);
58: pTempo->dblTempo = DEFAULT_TEMPO;
59: pTempo->dwFlags = DMUS_PMSGF_REFTIME;
60: pTempo->dwType = DMUS_PMSGT_TEMPO;
61: lpIDMPerformance->SendPMsg((DMUS_PMSG*)pTempo);
62: }

Loading the Performance Components
Now that we have created our interfaces, we must load the composition files we created
with DirectMusic Producer. We will use the IDirectMusicLoader reference to load the
template object and the associated style and chordmap objects (see Listing 9.3).

LISTING 9.3 The load_music() Function That Loads in the Template, Style, and
Chordmap Objects and Creates a New Segment

1: BOOL load_music()
2: {
3: DMUS_OBJECTDESC Desc;
4: HRESULT dmrval;
5:
6: // Enable object caching for the Loader object
7: lpIDMLoader->EnableCache(GUID_DirectMusicAllTypes, TRUE);

Applying DirectMusic 173

9

continues

14 1634xCH09 11/13/99 11:22 AM Page 173

8:
9: // Start by initializing Desc with the file name and
10: // class GUID for the band object.
11: ZeroMemory(&Desc, sizeof(Desc));
12: wcscpy(Desc.wszFileName, L”Template.tpl”);
13: Desc.guidClass = CLSID_DirectMusicSegment;
14: Desc.dwSize = sizeof (DMUS_OBJECTDESC);
15:
16: // Since we are including the Class ID and the name,
17: // we need to inform the Loader object
18: Desc.dwValidData = DMUS_OBJ_CLASS|DMUS_OBJ_FILENAME|DMUS_OBJ_FULLPATH;
19: dmrval = lpIDMLoader->GetObject(&Desc,

➥IID_IDirectMusicSegment, (void**) &lpIDMTemplate);
20:
21: if (!(lpIDMTemplate))
22: {
23: return FALSE;
24: }
25:
26: // Load the style associated with the template
27: Desc.guidClass = CLSID_DirectMusicStyle;
28: wcscpy(Desc.wszFileName, L”Style1.sty”);
29: dmrval = lpIDMLoader->GetObject(&Desc,

➥IID_IDirectMusicStyle, (void**)&lpIDMStyle);
30: if (!(lpIDMStyle))
31: {
32: return FALSE;
33: }
34:
35: // Load the chordmap associated with the template
36: Desc.guidClass = CLSID_DirectMusicChordMap;
37: wcscpy(Desc.wszFileName, L”Chordmap1.cdm”);
38: dmrval = lpIDMLoader->GetObject(&Desc, IID_IDirectMusicChordMap,

➥(void**)&lpIDMChordMap);
39:
40: if (!(lpIDMChordMap))
41: {
42: return FALSE;
43: }
44:
45: // Now that we have the template loaded, we need to create an actual
46: // segment that we can play
47: dmrval = lpIDMComposer->ComposeSegmentFromTemplate(lpIDMStyle,

➥lpIDMTemplate, 1, lpIDMChordMap, &lpIDMSegment);
48:
49: if (dmrval != S_OK)
50: {
51: return FALSE;
52: }

174 Hour 9

LISTING 9.3 continued

14 1634xCH09 11/13/99 11:22 AM Page 174

53:
54: // Set the music to loop infinitely
55: lpIDMSegment->SetRepeats(999);
56:
57: return TRUE;
58: }

The routine loads the template, style, and chordmap objects. When they are all loaded,
they are used by the ComposeSegmentFromTemplate method of the composer object to
create a new segment. We set the repeat value for the segment to 999 so that it loops
almost indefinitely. Upon returning, the segment is played by the performance object in
the Init() function as shown in Listing 9.2.

Changing the Music to Reflect the Scene
Now the game has music, but we want to make the music a little interactive. Wouldn’t it
be marvelous if we could speed up the music as the player starts walking in either direc-
tion, and slows back down as the player stops walking? Listing 9.4 shows how to change
the music based on the user movement, and Listing 9.5 shows how to pick up the
changes in the Windows message handler.

LISTING 9.4 The Addition to the WinMain() Function to Change the Tempo of
the Music as the Player Starts Moving

1: // We need to check whether or not we should change the tempo of the music
2: // We will key the tempo of the music to the speed the player is walking.
3: // Since the move rate varies from -300 to +300 ticks, we will change the
4: // tempo 10 beats a minute for every 60 ticks away from zero. Starting at
5: // 60 beats per minute this will equate to a tempo range of 60 to 110.
6:
7: // We first check the flag value to see if the player moved.
8: // This prevents sending unnecessary tempo changes.
9: if (fMoveChange)
10: {
11: // Take the move_rate and determine the exact tempo change
12: double lNewTempo;
13:
14: if (move_rate == 0)
15: lNewTempo = DEFAULT_TEMPO;
16: lNewTempo = (abs(move_rate) / 60) * 10 + DEFAULT_TEMPO;
17:
18: // Send a tempo message to the performance object with the new tempo
19: DMUS_TEMPO_PMSG* pTempo;
20: if(SUCCEEDED(lpIDMPerformance->AllocPMsg(sizeof(DMUS_TEMPO_PMSG),

➥(DMUS_PMSG**)&pTempo)))

Applying DirectMusic 175

9

continues

14 1634xCH09 11/13/99 11:22 AM Page 175

21: {
22: // Queue tempo event
23: ZeroMemory(pTempo, sizeof(DMUS_TEMPO_PMSG));
24: pTempo->dwSize = sizeof(DMUS_TEMPO_PMSG);
25: pTempo->dblTempo = lNewTempo;
26: pTempo->dwFlags = DMUS_PMSGF_REFTIME;
27: pTempo->dwType = DMUS_PMSGT_TEMPO;
28: lpIDMPerformance->SendPMsg((DMUS_PMSG*)pTempo);
29: }
30: fMoveChange = FALSE;
31: }

LISTING 9.5 The Addition to the WindowProc() Function to Change the
Movement Flag when the Player Moves

1: case WM_KEYDOWN:
2: switch (wParam)
3: {
4: case VK_LEFT:
5: // Process the LEFT ARROW key.
6: if (move_rate>-300.0)
7: {
8: fMoveChange = TRUE;
9: move_rate-=60.0;
10: }
11: break;
12: case VK_RIGHT:
13: // Process the RIGHT ARROW key.
14: if (move_rate<300.0)
15: {
16: fMoveChange = TRUE;
17: move_rate+=60.0;
18: }
19: break;
20: case VK_ESCAPE:
21: // exit the program on escape
22: DestroyWindow(hWnd);
23: break;
24: default:
25: // Process other non-character keystrokes.
26: break;
27: }
28: break;

176 Hour 9

LISTING 9.4 continued

14 1634xCH09 11/13/99 11:22 AM Page 176

As the player walks in either direction, the tempo change flag gets set. Then, during the
normal looping process, the flag is checked. If the flag is checked, a new tempo is calcu-
lated from the current player speed. After this new tempo is calculated, a tempo message
is sent to the performance object and the tempo changes. Because the piece of music that
is playing is based on a template, the music will seem to change even when the player is
standing still. Obviously, if many small patterns had been used instead of the imported
MIDI file, the music would seem even more dynamic. Now we have added interactive,
dynamic music to our game!

Summary
In this hour, you learned how to create music using the DirectMusic Producer applica-
tion. We covered how to create a band object and add in instruments. You learned how to
put together a rhythm and melody track as well as how to create template objects to
dynamically create music at runtime. Using what you have learned about the
DirectMusic Producer application, you should be able to create musical compositions of
your own to use in your own games.

Also in this hour, we covered a lot of the nitty-gritty of the DirectMusic interface. We
discussed how to load instruments and the other compositional files we created using the
Producer application. We also covered how to load and play these compositions through
the IDirectMusicPerformance interface. By adjusting some of the parameters of play-
back, you learned how you can make modifications to your musical pieces while they
play. Finally, we incorporated what has been covered in this and the previous hour to add
the musical score we created to our game.

Q&A
Q The DirectX Help files mention downloadable sounds (DLS). What are these,

and will I want to use them?

A Downloadable Sounds are essentially Windows .wav files that you import into
DirectMusic Producer and use as instruments. There is a process to this, which we
didn’t cover in this chapter because our sample projects used General MIDI sounds
rather than DLS. The primary advantages of DLS are consistency and flexibility.
Because the instrument sound is carried along with the project when using DLS, as
opposed to being hard-wired into a wavetable on the sound card, they will always
sound the same when playing the music on different machines. Also, DLS obvi-
ously lets us use a wider palette of sounds than General MIDI. For example, with a
simple .wav file of a dog barking, we could easily play one of our segments with

Applying DirectMusic 177

9

14 1634xCH09 11/13/99 11:22 AM Page 177

the sound rather than, say, General MIDI Piano. The primary disadvantage of DLS
is overhead; DLS files take much more time to download to a port than a simple
General MIDI patch selection, and the CPU also must do some work at runtime to
transform the .wav file to all the various notes being played in the piece.

Q Do I want to use automatic downloading of instruments, or is it preferable to
manually download them?

A Automatic downloading is turned off by default. However, in all the sample code
here, we have it turned on. You might want this turned off so you don’t have to
load all the instruments at the same time. If you decide to use the DLS format for
your instruments, they will usually be the largest single chunks of data you work
with in DirectMusic. Therefore, there will be significant hard drive work going on
during their loading; for most real-time applications (such as most games) it is
undesirable to load very large chunks of data because it will hang up the system
during the load. Note that if you choose to use manual downloading to get around
this, you must do a little extra work. I will summarize it here, although there are
concrete examples in the DirectMusic help files.

You must obtain a DirectMusicCollection object (which can be obtained with the
Loader) and Enumerate and Get the instruments off the Collection object. Then
call the DownloadInstrument() function on your Port object to download the
instruments one by one. Note that you must retain the
IDirectMusicDownloadedInstrument interfaces that this function passes back to
pass to UnloadInstrument() on the Port object when you are finished playing.

Q There are so many interfaces in DirectMusic, do I need to learn more about
all of them?

A The interfaces covered in this chapter provide most of the functionality you would
need for an application that plays songs such as a game. There are so many inter-
faces because DirectMusic is intended for use in all musical applications; for
example, someone writing a sequencer with the SDK would probably use more of
the interfaces. Some of the interfaces do rather novel and unique things, such as the
concept of a DirectMusic “tool.” We will not go into detail here on what all these
interesting extras can accomplish because that could turn this chapter into a book
in itself, but you should know that you can get away with the interfaces discussed
in this chapter for most playing type activity, and the others are the “bells and
whistles.”

178 Hour 9

14 1634xCH09 11/13/99 11:22 AM Page 178

Q Do I need to know about music to code for DirectMusic? And do I need to
know about programming to compose for DirectMusic?

A In short, not really. Programmers can get away without knowing what is going on
musically, as long as they understand all the necessary elements required for a
complete DirectMusic song. This could vary, depending on the level of interactivity
desired. For example, very few interfaces are needed to simply play a linear MIDI
file, but if you want to get interactive, you must begin introducing more interfaces
(styles, templates, and so on). Likewise, the musician doesn’t really need to know
how the programmers will be accomplishing their work with code, but the musi-
cian must understand the amount of resources required for the programmers to
write their code.

All this is not to say that the two jobs have little communication between them; it
is important to collaborate on a suitable format for the music in the project. For
example, the music might just be MIDI files, or it might be elaborate interactive
music consisting of styles, chordmaps, templates, DLS collections, and so on. It is
a good idea to work these things out before composing or coding because both
sides will surely undergo major changes if you decide to change the format of the
music after starting.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and get you thinking about how to put your knowledge into practice. The
answers to the quiz are in Appendix A, “Answers.”

Quiz
1. How can I change the instruments that are playing the current segment to a differ-

ent set of instruments?

2. What are the differences between pan and volume, and where can these values be
changed within the Producer application?

3. What different methods can I use to change my music as it is playing?

Applying DirectMusic 179

9

14 1634xCH09 11/13/99 11:22 AM Page 179

Exercises
1. Some capabilities can be achieved by controlling the objects that the

IDirectMusicPerformance object creates during initialization. For example, you
could create your own DirectSound reference and pass it into the Init method. You
could then apply some of the capabilities of DirectSound such as using 3D sound
buffers. It would be possible to create a 3D sound buffer and change the locations
of the instruments in 3D space. Try applying what was covered about DirectSound
earlier to change the parameters of the actual sound data that DirectMusic pro-
duces. After covering 3D sound buffers in a later hour, try experimenting with
applying the techniques discussed there to create 3D music.

2. Be sure and read the help files that come with the DirectMusic Producer applica-
tion. The help files are quite extensive, and although they seem to be written for
people with a musical background, they should be helpful to anyone. Also be sure
to check out the code samples that come with DirectMusic. The different samples
cover a range of concepts from loading a simple segment, to creating many differ-
ent segments from template objects. The code samples can be a great reference and
can even serve as a starting point for code for your own game.

3. Try to create different template objects. Because templates have such a dynamic
flow, it might be difficult for most of us to really produce professional quality
music without using templates. It is entirely possible, however, for even the novice
to create a truly interesting piece of dynamic music. I often find that experimenta-
tion is the key. Try starting with around ten or so small patterns that are only a cou-
ple of measures long. Then create a few different band objects with only slight
changes in them, such as pan or volume changes, or entire instrument changes.
Add more chords to the associated chordmap object, and add more signposts to the
template. The more material you add to the template, the more random
DirectMusic will be able to make it.

180 Hour 9

14 1634xCH09 11/13/99 11:22 AM Page 180

HOUR 10
Introduction to 3D
Concepts

It is now time for you to get your feet wet in the basic concepts of 3D. You
will move into Direct3D over the next few hours, but first you must under-
stand some basic concepts that we will use to describe a 3D world and the
interaction of objects in a scene.

In this hour, you will learn what it takes to create objects and scenes in 3D,
including

• The basic components of the 3D pipeline

• Describing locations with 3D coordinates

• How polygons are used to create solid 3D objects

• What matrixes are, and how they can be used to manipulate 3D space

• How to use matrices to move objects and establish the user’s point of
view

15 1634xCH10 11/13/99 10:43 AM Page 181

An Overview of the 3D Process
Before we delve into the specifics of the 3D engine, let’s explore the overall process that
allows a 3D scene to appear on our screen by looking at how 3D models are defined and
ultimately rendered by the computer’s video hardware.

Object Definitions
Just as creating artwork is a first step in developing a two-dimensional game title, in 3D
the task begins with the creation of 3D artwork. Unlike the flat images you are accus-
tomed to, however, you must now create objects that describe the actual shape and con-
tours that define them.

These object definitions, which are composed of groups of interconnected points, are
known as 3D models. By connecting the dots, the computer can generate a representation
of the object from any angle. A model in this format is commonly called a wireframe
model (or mesh) because of its appearance when rendered in this state. Wireframes are
interesting, but what you’re really after is a realistic 3D model. For that, you must go one
step further.

After the shape has been defined, colors and lighting effects might be added, and
a 2D image can be stretched over the surface of the wireframe model to form a

skin that provides a realistic appearance. This process is known as Texture Mapping.
Essentially, you take a 3D wireframe model and “shrink-wrap” a bitmapped image to the
model.

The 3D Pipeline
After you have defined the models that will populate your world, quite a few steps still
must be completed before the models hit the screen. The software and hardware that
processes 3D models and translates them to the screen is known as the 3D pipeline. The
pipeline gets its name from the sequential nature of these processes; in essence forming a
conduit that all models must flow through on their way to the screen.

The 3D pipeline is a series of processes that must be executed on a collection of
models to generate a 2D representation of the scene.

This section provides an overview of the 3D pipeline, so you will be able to put the
upcoming details into perspective. Note that you will often hear individual portions of
the process described as pipelines, such as the “transformation pipeline,” referring to the
processing of models through a specific task in the 3D engine.

182 Hour 10

NEW TERM

NEW TERM

15 1634xCH10 11/13/99 10:43 AM Page 182

To begin, 3D image manipulation and graphics rendering requires a tremendous amount
of mathematical calculation to take place to properly visualize a given scene. In a larger
sense, this is what the 3D pipeline’s role involves—lightning-fast calculations and quick
data manipulation. For example, the 3D models must all be moved into their respective
3D positions, which is known as transformation. Some models might be translated to the
edge of the viewable scene such that parts of them must be snipped off, a process known
as clipping. If the scene has light sources defined, to increase the realism of the scene,
the lighting pipeline manages the myriad of calculations required to place the light
sources and accurately simulate the reflected light from each 3D model.

Of course, you begin with 3D wireframes, so the textures must be applied to each to
improve each model’s appearance. Clearly, some models will be located in front of oth-
ers, so the portions of models set farther back in the scene that are hidden from view
because of closer models must not be rendered, a process known as hidden surface
removal. And, of course, the final scene must be rendered to the screen, something
known as rasterization. Let’s look at each of these pipelines in more detail.

Transformation
The first step along the way is to manipulate the models into their proper place in rela-
tion to each other. This process in known as “transformation.”

Transformation is the process of manipulating the coordinates in a model, to
determine the location and orientation.

Each object is subjected to a series of transforms, which is a mathematical means to
translate coordinates from one position and orientation to another.

The first such transform, called the “World Transform,” is used to position the object in
3D space. Each object will typically be subjected to a different transform, identifying its
place in the scene.

After objects have been translated into the scene, the next step in the transformation
pipeline is determining their position relative to the viewer. This is known as the “View
Transform.”

Finally, the objects are submitted to a third transform, the “Perspective Transform.” This
transform is responsible for shaping the scene into the perspective you desire, and basi-
cally has the same function as the lens of a camera. By selecting different perspective
transformations, you can greatly change the user’s field of view and perception of depth.

Introduction to 3D Concepts 183

10

NEW TERM

15 1634xCH10 11/13/99 10:43 AM Page 183

Clipping
After the objects in the scene have been shifted to reflect the viewer’s perspective, the
next step is to determine what is within the viewing area of the screen. Each object is
tested to determine whether it is on or off the screen. Objects that are partially within the
viewing area are trimmed to the edges of the screen; a process known as clipping.

Lighting
To provide a higher level of realism, the objects can be subjected to light sources within
the 3D world. The amount of light is calculated for each area, and highlights are calcu-
lated to provide an illusion of reflective shine on objects that require it.

Texturing
After lighting has been applied, a texture map might be stretched over objects to apply
additional realism. These textures are combined with the lighting values previously cal-
culated in the lighting pipeline to provide shading of the object surface.

Hidden Surface Removal
Just as you experienced in Hour 5, “Make It Move—DirectDraw Animation Techniques,”
with the creation of a parallax engine, objects in a 3D scene will often overlap as well.
To allow for this, the rendering engine must determine which objects are obscured, and
prevent their display. This process is known as hidden surface removal.

Hidden surface removal is the process of removing those parts of a 3D scene that
should not be visible to the viewer.

Rasterization
Rasterization is the final step of the rendering pipeline. This is the process of converting
3D surfaces—after they have been transformed, clipped, lit, and textured—into pixels on
the screen. In most video cards available on the market today, this process is provided by
accelerated hardware on the video adapter.

Now that you’ve seen some of the tools the 3D graphics system provides, it’s time to
take a closer look at what your responsibilities involve when modeling a 3D scene. A
good place to start is to understand how to define where your 3D models should be
located when viewed from a 3D perspective.

Defining Locations in 3D Space
When working with 2D images, you specify a location by providing the distance from
the upper-left corner of the screen, expressed as x, y (see Figure 10.1).

184 Hour 10

NEW TERM

15 1634xCH10 11/13/99 10:43 AM Page 184

When working with 3D coordinates, you add a third axis to the coordinate, known as z.
You might recognize this from Hour 5, where you used Z-Ordering to provide an appear-
ance of 3D to what was actually a series of flat images.

Notice that the y-axis points up, rather than down as in 2D. Also note that the z-axis
points away from us, into the screen.

The New Origami—Building Objects in 3D
One of the greatest challenges in creating a 3D world is to represent the objects we
encounter in a realistic manner, while keeping the detail to a level that is practical for
real-time rendering.

When you create 3D objects for DirectX, you represent them as a series of intercon-
nected triangles. For example, if you wanted to represent a cube as a 3D model, you
could do so by dividing each face into two triangles, as shown in Figure 10.2.

Introduction to 3D Concepts 185

10

FIGURE 10.1
2D versus 3D
coordinates.

3D Coordinates

0,0,0

Y

X

Z

2D Coordinates0,0

Y

X

FIGURE 10.2
A cube defined as a
3D mesh.

When you look at objects in the real world, you see them as being composed of continu-
ously varying surfaces. Most naturally occurring objects, as well as many of those that
are man-made, consist of curving or organic surfaces. Because of the angular nature of
polygon-based models, 3D models only provide an approximation of organic shapes, as
seen in Figure 10.3.

15 1634xCH10 11/13/99 10:43 AM Page 185

Relative Coordinates—Origins and Vectors
To define a 3D coordinate in Direct3D, the following D3DVECTOR structure is used.

The Syntax for a D3DVECTOR Structure
typedef struct _D3DVECTOR {

union {
D3DVALUE x;
D3DVALUE dvX;

};
union {

D3DVALUE y;
D3DVALUE dvY;

};
union {

D3DVALUE z;
D3DVALUE dvZ;

};
} D3DVECTOR, *LPD3DVECTOR;

However, this definition is a bit tricky. A vector is actually defined as a line of a
fixed direction and a fixed length. They can be used for a variety of purposes,

including as a measure of location, orientation, distance, and speed of travel within 3D
space.

So why do you use vectors to represent points in space? The answer might seem a bit
vague at first: in 3D, all things are relative.

When defining a point in space, its location is defined relative to an arbitrary point in
space, known as the origin. In dealing with 2D screen space, you reference points rela-
tive to the upper-left corner of the screen. This is our origin in 2D space; the point at
which all axis have a value of zero.

The same is true in 3D coordinates, although the point in space we use does not have to
be relative to a specific screen coordinate.

In some ways, this is similar to our experience in DirectDraw with sprites. When work-
ing in 2D, each of the images that you add to the scene have a starting point of 0,0.

186 Hour 10

FIGURE 10.3
Approximating curves
in 3D objects.

SY
N

TA
X

,

NEW TERM

15 1634xCH10 11/13/99 10:43 AM Page 186

However, when you blit them onto the screen, you select their position relative to the ori-
gin of the video surface.

When working with 3D models, there is another level of complexity to deal with. Not
only are you able to move along three axis rather than two, but you also have the flexibil-
ity to move objects freely through space, including rotation and scaling as well (see
Figure 10.4).

Introduction to 3D Concepts 187

10

FIGURE 10.4
An object with sepa-
rate origin relative to
scene.

Matrixes—Making the World Go Round
You place the objects in a 3D scene through a series of transforms, as you previously
looked at in the review of the 3D pipeline. These transformations are accomplished
mathematically, by using an object known as a matrix.

A matrix is a two dimensional array of values, which together are used to express
a transformation, forming new coordinates that are based on a different origin

and orientation than the original. In this case, you will be using a 4×4 matrix; that is, an
array that is four columns wide and four rows high. The values are stored in a D3DMATRIX
structure, as shown in the following.

The Syntax for a D3DMATRIX Structure
typedef struct _D3DMATRIX {

D3DVALUE _11, _12, _13, _14;
D3DVALUE _21, _22, _23, _24;
D3DVALUE _31, _32, _33, _34;
D3DVALUE _41, _42, _43, _44;

} D3DMATRIX, *LPD3DMATRIX;

SY
N

TA
X

,

NEW TERM

15 1634xCH10 11/13/99 10:43 AM Page 187

To transform a vector, its coordinates are multiplied against the values of the matrix, in
the following manner:

New_X = _11*x + _21*y + 31*z + _41
New_Y = _12*x + _22*y + 32*z + _42
New_Z = _13*x + _23*y + 33*z + _43

This might seem a bit confusing at first, but if you take a little time to follow the equa-
tion through its steps, you will see a pattern emerging.

Each column represents the values necessary to calculate the result for an axis. Reading
from left to right, the first columns provide the formulas for the x-, y-, and z-axis,
respectively. The fourth column is basically a placeholder because some matrix math
functions require that the matrix be square.

Just as the columns serve as our output, the rows of the matrix serve as our inputs. You
will see, for example, that elements _11, _12, and _13 are all factors that are multiplied
by the original x value of the coordinate. As before, the first three rows from the top
down correspond to x, y, and z. In this case, however, the fourth row has a purpose—it
determines what offset will be applied on each axis, independent of the original value of
the vector.

The math involved in matrix creation can get a bit complicated. Fortunately, you will not
need to understand the inner workings of matrixes because a variety of helper functions
are included with Direct3D to assist in matrix and vector calculations.

For example, the preceding operation can be performed using the
D3DMath_VectorMatrixMultiply function, as shown in the following.

The Syntax for D3DMath_VectorMatrixMultiply
HRESULT D3DMath_VectorMatrixMultiply (

D3DVECTOR &vDest,
D3DVECTOR &vSrc,
D3DMATRIX &mat

);

The D3DMath_VectorMatrixMultiply() function multiplies a vector by a transformation
matrix and stores the result in a second vector structure. On success, this function returns
S_OK or will return E_INVALIDARG if the matrix supplied is invalid.

Parameters:

vDest Vector that will receive results of the transformation

vSrc Vector containing coordinates to be transformed

mat Matrix containing the desired transformation

188 Hour 10

,
S Y

N
TA

X

,

15 1634xCH10 11/13/99 10:43 AM Page 188

This and other such helper functions, which are provided in the D3DFRAME directory
of the SDK Direct3D Immediate Mode Samples, are provided as a ready means to imple-
ment common functions. These are not an integral part of the Immediate Mode API, so
you are free to use these functions or create your own as you see fit.

Now that you have a basic understanding of the purpose of matrices, take a look at the
transforms that form the transformation pipeline in Direct3D. Along the way, you will
see how matrices are created and learn a bit more about the capabilities they provide.

The World Transform
In a typical 3D scene, several models must be placed within the scene, each with their
own independent location. Within each model, the coordinates given are relative to an
origin that is specific to the 3D model. These coordinates are said to be in “model
space.”

To define your scene, you will need to transform these coordinates so that they represent
locations relative to a new origin, which will represent their position within the world
you are creating. The results of this transformation are thus said to be in “world space.”

All the models in the scene will be transformed to their desired location in world space
so that the coordinates now share a common origin (see Figure 10.5). You might even
include multiple instances of the same model, by providing a separate transform for each
copy of the model.

Introduction to 3D Concepts 189

10

FIGURE 10.5
Transforming objects
into the world view.

Model Space
A

Model Space
B World Space

A

B

Transform

Transform

Transform

15 1634xCH10 11/13/99 10:43 AM Page 189

The world matrix will often be the transformation that you apply the most because each
object that moves within the scene will have its own world matrix which must be updated
every frame to reflect the object’s motion. This is in contrast to the view matrix, which
must be set once per frame for the entire scene, or the projection matrix, which you’ll
commonly set once and leave alone from that point on.

Three Types of Transforms
The transformations that are required for object control fall into three categories: transla-
tion, scaling, and rotation.

Translation is an operation that moves an object in a linear fashion, without
rotating the object or affecting its size. The object can be translated in any of the
three directions, X, Y, and Z.

Scaling an object changes the object’s size. The object can be scaled to be larger
or smaller than the original model.

Rotation spins the object in 3D space. Objects can be rotated about any of the
three coordinate axes, X, Y, and Z.

These three operations can be combined to describe any position, orientation, and size
that an object might occupy. Each operation requires its own matrix to describe the trans-
formation. Each coordinate of the 3D model will be run through the transformation
matrix to calculate a final coordinate, which is ultimately where the object will be ren-
dered when rasterized. Tables 10.1 through 10.5 provide a summary of how the matrices
are set up for each of these three operations along with their respective DirectX 3D util-
ity functions used to initialize the matrix for each case. You’ll find the functions in the
D3Dutil.cpp file, which ships with the DirectX SDK.

Translation moves the 3D object along the vector (a,b,c), shown in Table 10.1. Scaling
resizes the object according to scaling factors, one for each coordinate direction. The X
value is adjusted by a, Y by b, and Z by c, as you see in Table 10.2. Rotation is the most
complicated—you can rotate about any of the coordinate axes, as delineated in Tables
10.3 through 10.5. In these cases, R is the rotation angle (in radians) about a given axis.

In each case, note the three coordinates are involved (X, Y, and Z) as well as a new term,
H. H is generally considered a convenience term to make the mathematics somewhat
simpler, and though it does have theoretical significance, for this purpose you can ignore
it. Simply carry it along with your calculations. For example, translation by a vector
(a,b,c) becomesthe vector (a,b,c,1) when multiplied through the translation matrix. The
resulting H value can generally be thrown away, at least when dealing with transforma-
tions.

190 Hour 10

NEW TERM

NEW TERM

NEW TERM

15 1634xCH10 11/13/99 10:43 AM Page 190

TABLE 10.1 3D Translation Matrix (D3DUtil_SetTranslateMatrix())

X Y Z H

1 0 0 0

0 1 0 0

0 0 1 0

a b c 1

TABLE 10.2 3D Scaling Matrix (D3DUtil_SetScaleMatrix())

X Y Z H

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 1

TABLE 10.3 3D X-Axis Rotation Matrix (D3Dutil_SetRotateXMatrix())

X Y Z H

1 0 0 0

0 cos(R) sin(R) 0

0 –sin(R) cos(R) 0

0 0 0 1

TABLE 10.4 3D Y-Axis Rotation Matrix (D3Dutil_SetRotateYMatrix())

X Y Z H

cos(R) 0 –sin(R) 0

0 1 0 0

sin(R) 0 cos(R) 0

0 0 0 1

Introduction to 3D Concepts 191

10

15 1634xCH10 11/13/99 10:43 AM Page 191

TABLE 10.5 3D Z-Axis Rotation Matrix (D3Dutil_SetRotateZMatrix())

X Y Z H

cos(R) sin(R) 0 0

–sin(R) cos(R) 0 0

0 0 1 0

0 0 0 1

Combining Several Transforms into One
When multiple transformations are performed on a coordinate, taking the output from
each matrix and using it as the input for the next, the effects of the matrix transforma-
tions are cumulative. Therefore, you can string together several matrices that will form a
motion that, for example, will both translate the object and cause it to rotate around its
y-axis.

However, having to perform a long series of transformations on each vertex in the scene
would be very expensive in terms of CPU power. Fortunately, there is a way around this.

When two matrixes are multiplied together, through a process known as matrix concate-
nation, the result is a new matrix that performs the functions of both of the original
matrices. Any number of matrix transforms can be combined in this manner. A helper
function is available in the SDK called D3DMath_MatrixMultiply(), as shown in the fol-
lowing.

The Syntax for D3DMath_MatrixMultiply()
VOID D3DMath_MatrixMultiply (

D3DMATRIX &q,
D3DMATRIX &a,
D3DMATRIX &b

);

The D3DMath_MatrixMultiply() function multiplies two matrices together, returning a
concatenated matrix representing both of the input matrices.

Parameters:

q Matrix that will receive results of the matrix multiplication

a Matrix containing first transformation

b Matrix containing second transformation

Note that the order in which matrices are multiplied determines the order in which the
transformations will be evaluated. This must be taken into consideration if you expect to

192 Hour 10

,
SY

N
TA

X

,

15 1634xCH10 11/13/99 10:43 AM Page 192

get the desired result from your transform. The reason for this is that matrix multiplica-
tion is not commutative. This means the resulting matrix derived by multiplying Matrix
A by Matrix B is not the same as the resulting matrix when Matrix B is multiplied by
Matrix A. They don’t mean the same thing, and this directly results in an improper, or at
least unexpected, visual effect.

Take Figure 10.6, for example. If you wanted to place an object at (0,10,0) with a rota-
tion of 45 degrees around the y-axis, you first turn the object 45 degrees, then move the
object upward 10 units from the origin.

Introduction to 3D Concepts 193

10

FIGURE 10.6
Effects of rotation then
translation.

Y

Z X

If, however, you were to translate the object first, the situation portrayed in Figure 10.7
would occur. After you translated the object, your attempt to rotate the object would not
twist it on its axis. Instead, it would move in an arc around (0,0,0), causing it to move
away from the desired (0,10,0) position.

FIGURE 10.7
Effects of translation
then rotation.

Y

Z X

Now that you know how to locate objects in 3D space, it’s time to see how they are pre-
sented to a viewer. The nice aspect about the 3D graphics calculations you’ve been using
so far is the location of the objects is independent from the viewing aspect of the user.

15 1634xCH10 11/13/99 10:43 AM Page 193

That allows you to place the user’s viewpoint anywhere within your 3D world without
having to relocate the objects. To do this you use the view transform.

The View Transform
The real appeal of a 3D game is that it not only allows for control of object motion
within the world, but also allows for the user to move through the world as well. In this
way, you can immerse the user into the 3D world you have created, allowing them the
illusion of traveling through your scene.

Just as you had to locate the models in world space, you must also place the viewer
within the scene. However, because you cannot physically move the viewer, you must
move the world to provide the proper view for the location and orientation you want to
portray.

The effect of this is that the values you apply have their sign reversed to perform the
proper transformation. For example, if you wanted to position the viewer at a location 10
units forward from the world origin on the z-axis (0,0,10), you would actually move the
world 10 units back, ending up with a view from (0,0,–10).

Once again, helper functions are provided to assist in creating the view matrix. Several
ways to construct the view matrix exist, but to start out we will be using the
D3DUtil_SetViewMatrix() function. This function takes vectors corresponding to the
viewer’s location, a point that is directly in front of them, and a vector pointing upward
from the user’s point of view.

This function is a useful starting point, though it might be a bit cumbersome later when
you are looking for more control of the view. But for now it basically lets you tell
Direct3D that “I am standing here, looking over there.” The syntax for this function is as
follows.

The Syntax for D3DUtil_SetViewMatrix
HRESULT D3DUtil_SetViewMatrix(D3DMATRIX& mat,

D3DVECTOR& vFrom,
D3DVECTOR& vAt,
D3DVECTOR& vWorldUp)

The D3DUtil_SetViewMatrix() function constructs a view matrix from vectors for the
view location, up direction, and forward (look at) direction.

Parameters:

mat D3DMATRIX that will receive the resulting matrix

vFrom D3DVECTOR containing the location from which the scene is
being viewed

194 Hour 10

,
SY

N
TA

X
,

15 1634xCH10 11/13/99 10:43 AM Page 194

vAt D3DVECTOR containing a point that is in front of the user, to
which the view origin will be translated

vWorldUp A vector pointing upward from the user’s perspective, with
a length of 1.0

The Projection Matrix
With the view matrix constructed, only one transform is left before your object can hit
the screen. But before you can understand the projection transform, you must take a
closer look at how you perceive the world before you.

After being processed through the view matrix, the objects have been oriented to our
view—but if you were to view the scene at this point, you would find that it lacks a feel-
ing of perspective.

That is where the projection matrix comes in, providing a way to define your visual per-
ception of the scene. However, a few more things must be considered before jumping in.
Take time to review this hour and ensure that you have grasped the concept of transfor-
mations and vectors. In the next hour, we will dive into the remaining processes required
to render the scene to the screen.

Summary
In this hour, you learned the essentials of defining a world in 3D. You have attained a
basic understanding of how objects are created as 3D models, and learned how they are
placed into a viewable 3D scene. You’ll use the techniques you’ve seen here over and
over again to move objects in your 3D world around, shift the viewpoint of the viewer,
and make basic 3D models appear realistic. If some of this seemed complicated, that’s
because it is. However, you have DirectX on your side, and DirectX handles the majority
of the gritty details for you. To your users, it looks like magic, which is the best effect
of all.

Q&A
Q You said that the helper functions provided with the SDK are provided for

convenience, and I can replace them with my own functions if I want. What
are the advantages in doing so?

A The helper functions are generic functions, which are made to support most situa-
tions. As such they are easily integrated into your application, and they provide a
decent level of performance. However, as generic routines, they might provide

Introduction to 3D Concepts 195

10

,

,

15 1634xCH10 11/13/99 10:43 AM Page 195

more than you need, and that can eat up performance. Each case is unique, but at
some point—when you are confident of the rest of your application—it pays off to
sit down and evaluate each aspect of your program.

Q You said that you usually rotate and then translate when concatenating matri-
ces, but I found examples in earlier versions of DirectX that do it in the oppo-
site order. Why is that?

A The D3Dmath_MatrixMultiply() helper function in earlier versions of DirectX had
an error in that it actually multiplied matrices B×A rather than A×B. If you look at
the implementation of the function in DirectX 7, you’ll notice a comment indicat-
ing that the error was corrected for this version. This makes the examples look like
they are translating then rotating.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. The world transform converts coordinates

a. From view coordinates to world coordinates

b. From model coordinates to world coordinates

c. From world coordinate to screen coordinates

d. From model coordinates to view coordinates

2. Name the three transformation matrixes that are used in the transformation
pipeline.

3. Name the three kinds of matrix transformation.

4. What type of transform is used to move an object in a straight line?

5. True or false: Multiplication of matrices is commutative, meaning that it is the
same in either order.

Exercises
No Exercises

196 Hour 10

15 1634xCH10 11/13/99 10:43 AM Page 196

HOUR 11
Rendering the 3D Scene

Now that you have had a look into the creation and organization of a 3D
world, you will delve deeper into the 3D rendering process. Your studies in
this hour will include the following:

� Learning the inner workings of the viewing frustum, which is the
cross-section of space that is visible from a given perspective.

� Learning how to set up the viewing frustum by establishing a projec-
tion matrix and setting viewport parameters.

� Learning how to set up the rendering viewport.
� Looking at how back-face culling and z-buffering are used to provide

hidden surface removal in Direct3D.

Hierarchy of Direct3D Immediate Mode
Before you continue exploring the theory behind 3D rendering, you need to
look at the interfaces you will be using to implement Direct3D applications.
This will allow you to better understand how these methods are applied.

16 1634xCH11 11/13/99 10:46 AM Page 197

Direct3D sits atop DirectDraw, using the methods established in DirectDraw to access
the video hardware, and renders a 3D scene onto a DirectDraw surface. As with
DirectDraw, it also supports interfaces for HAL, the Hardware Abstraction Layer, and
HEL, the Hardware Emulation Layer. This ensures that you can use accelerated functions
in 3D accelerators, while still providing compatibility for systems that do not support
such features in hardware.

The IDirect3D7 Interface
The backbone of Direct3D consists of two interfaces. The IDirect3D7 interface is the
base interface that associates Direct3D with an existing DirectDraw interface. To create
an IDirect3D7 interface, query the DirectDraw interface using QueryInterface():

hResult = lpDD->QueryInterface (IID_IDirect3D7, (void **)&lpD3D);

This interface will be used to create the remainder of the Direct3D interfaces.

The IDirect3DDevice7 Interface
Although the IDirect3D7 interface initializes Direct3D and associates it with
DirectDraw, it does not provide any connection to video hardware.

Connecting to the hardware is the job of our second interface: IDirect3DDevice7. This
is created by using the CreateDevice() member of the IDirect3D7 interface you have
created. The syntax for this function is shown in the following.

The Syntax for IDirect3D7::CreateDevice
HRESULT CreateDevice(
REFCLSID rclsid,
LPDIRECTDRAWSURFACE7 lpDDS,
LPDIRECT3DDEVICE7 *lplpD3DDevice,
LPUNKNOWN pUnkOuter
);

CreateDevice() creates an IDirect3DDevice7 that is bound to the video hardware rep-
resented by the provided surface. The function returns D3D_OK on success.

Parameters:

rclsid Class ID representing the hardware support
required

lpDDS Surface to which the device will write

lplp3DDevice Pointer that will receive a pointer to the newly
created device

pUnkOuter Reserved for future use, must be set to NULL

198 Hour 11

,
SY

N
TA

X

,

16 1634xCH11 11/13/99 10:46 AM Page 198

As you will learn in the upcoming sections, the Direct3D device interface that is created
is the window to the Direct3D graphics engine. This is where the 3D pipeline, which you
learned about in the last hour, dwells. You will use this device to define your viewing
parameters, define how the scene is lit, and create and render your 3D objects.

Now you will resume your studies of 3D rendering and learn how the pieces fall into
place.

The Viewing Frustum
In the last hour, you learned of the transformations that take place to locate objects in
their proper places in relation to the viewer. When this is complete, you must determine
what objects are within the viewing area, and where they will appear on the screen.

As we observed in our study of parallax (Hour 5, “Make It Move—DirectDraw
Animation Techniques”), objects appear to grow larger as they get closer, taking up a
greater portion of our view. This is because our view of the world, though it might not
appear so, is actually a cone. As illustrated in Figure 11.1, our view covers a larger area
as distance increases.

Rendering the 3D Scene 199

11
FIGURE 11.1
The viewing frustum.

This cone, known as the viewing frustum, is defined by the limits of our peripheral vision.
In Direct3D, you will determine how the frustum is shaped, and thus how you perceive
distance, by providing a field of view. This value is defined by the angle formed by either
side of the frustum.

Our field of view is roughly circular. However, when viewing a scene on the screen, our
view of the world is rectangular. To compensate for this, the frustum that Direct3D cre-
ates is a four-sided pyramid.

Clipping the Frustum to the Field of View
The first step in generating the viewing frustum is to provide an angle for the field of
view, which defines how wide the viewing frustum is. Anything outside this angle will be
clipped and not be visible to the user.

16 1634xCH11 11/13/99 10:46 AM Page 199

The effect of the field of view parameter is analogous to using a zoom lens on a camera.
The smaller the field of view, the greater the zoom. This has two effects, which can be
seen in Figure 11.2. As the zoom increases, objects become larger and appear to be
closer. However, at the same time, the area we are able to see grows smaller, and the per-
ception of depth decreases as well.

200 Hour 11

Narrow Field of ViewWideField of View

FIGURE 11.2
The effect of field of
view on perspective of
depth.

Front and Rear Clipping Planes
In addition to defining the width of the viewing frustum, you must also define what the
limits of the frustum are, in terms of distance away from the viewer along the z-axis.

Two limits that you must specify along the z-axis are as follows:

� The far clipping plane, which determines how far into the distance you can see.
� The near clipping plane, which determines how close an object can be before it is

considered to be behind you.

The far clipping plane is fairly straightforward. Any objects that extend beyond this dis-
tance will not be displayed, so you must consider how far away an object might be in
your scene and still be visible.

The near clipping plane is a little more difficult to grasp at first. It is, however, necessary
that you limit how closely you can look at an object, both for reasons of performance and
because the realism of a 3D scene breaks down at close distances.

The Projection Matrix, Revisited
From the last hour, recall that the third matrix in the transformation pipeline was responsible
for giving a perception of depth to the scene. This is where the shape of the frustum is
defined.

16 1634xCH11 11/13/99 10:46 AM Page 200

To define the projection matrix, we will use a helper function,
D3DUtil_SetProjectionMatrix(). This function is defined as follows.

The Syntax for D3DUtil_SetProjectionMatrix
HRESULT D3DUtil_SetProjectionMatrix (
D3DMATRIX& mat,
FLOAT fFOV,
FLOAT fAspect,
FLOAT fNearPlane,
Float fFarPlane
);

The D3DUtil_SetProjectsionMatrix function creates a projection matrix from the pro-
vided parameters. It returns S_OK on success, or E_INVALIDARG if there is an invalid argu-
ment.

Parameters:

mat Reference to an existing matrix that is to receive the
projection matrix

fFOV Field of view, in radians

fAspect Aspect ratio of the viewport

fNearPlane Distance of near clipping plane from the viewer

fFarPlane Distance of far clipping plane from the viewer

The field of view parameter, fFOV, determines how wide or narrow the viewing
frustumwill be (see Figure 11.2). Note that the angle is provided in radians, not degrees.
In case you are not familiar with this unit of measure, we will take a moment to define
our angular measurements.

When expressing angles in layman’s terms, we usually express angles in degrees. A
degree, expressed using the symbol ° is a unit of measure that is equal to 1/360th of a
revolution, as illustrated in Figure 11.3.

By contrast, radians are measured in terms of pi (π), which is equal to approximately
3.14159. A value of π radians is equal to 180°. Thus, 2π radians represents a complete
circle.

The next parameter, fAspect, provides the aspect ratio of the viewing area. This is cal-
culated by dividing the height of the viewport, in pixels, by the width, in pixels.

Finally, you provide the distance to the near and far clipping planes. As mentioned previ-
ously, units in Direct3D are arbitrary. A distance of one (1.0) might represent an inch, a
foot, or a meter—it is up to you to determine.

Rendering the 3D Scene 201

11

,
SY

N
TA

X

,

16 1634xCH11 11/13/99 10:46 AM Page 201

How you define the clipping planes will put the unit of measure into perspective. For
example, if you were measuring in feet, you might set the front and rear clipping planes
at 10 and 500, respectively. However, if your unit of measure were inches, values of 120
and 6000 would be more appropriate.

Defining the Viewport
After you have defined the shape of the frustum, you must define how it is mapped onto
the screen. To accomplish this, you must define a viewport.

A viewport describes the area of the screen to which the frustum will be mapped, and
also provides the minimum and maximum values for each axis that will fit within the
viewport. The viewport is defined using a D3DVIEWPORT7 structure, described in the fol-
lowing.

The Syntax for D3DVIEWPORT7
typedef struct _D3DVIEWPORT7 {

DWORD dwX;
DWORD dwY;
DWORD dwWidth;
DWORD dwHeight;
D3DVALUE dvMinZ;
D3DVALUE dvMaxZ;

} D3DVIEWPORT7, *LPD3DVIEWPORT7;

Members:

dwX Pixel coordinate of the left side of the viewport.

dwY Pixel coordinate of the top of the viewport.

dwWidth Width of the viewport, in pixels.

dwHeight Height of the viewport, in pixels.

202 Hour 11

Degrees

0

180

270 90

Radians

0

π

3π/2 π/2

FIGURE 11.3
Measuring angles in
degrees and radians.

,
SY

N
TA

X
,

16 1634xCH11 11/13/99 10:46 AM Page 202

dvMinZ Minimum transformed Z value for near clipping
plane, usually set to 0.0.

dvMaxZ Maximum transformed Z value for far clipping
plane, usually set to 1.0.

After you have filled a structure with the desired parameters, set the device to that view-
port structure. If you wanted to set a viewport for a full-screen 640×480 application
using the entire screen, Listing 11.1 would apply.

LISTING 11.1 Setting a 640×480 Viewport

1: // set up the viewport info
2: D3DVIEWPORT7 view;
3: view.dwX=0;
4: view.dwY=0;
5: view.dwWidth=640;
6: view.dwHeight=480;
7: view.dvMinZ=0.0f;
8: view.dvMaxZ=1.0f;
9:
10: // set the device to the viewport
11: lpD3DDevice7->SetViewport(&viewport);

Hidden Surface Removal
When rendering a complex scene, it is important that you deal not only with displaying
the objects within your view, but also that you hide those that are not. This process is
known as hidden surface removal, and it is achieved through several mechanisms dis-
cussed here.

Several types of hidden surfaces that will have to be dealt with are as follows:

� Surfaces that are on the back side of an object that is in your view.
� Objects, or portions of objects, that are obscured by other items in the scene.
� Objects that are not within your field of view because they are too far away or in a

different direction from that you are facing.

Techniques for hidden surface removal are quite involved. Fortunately, DirectX provides
built-in support for these issues, and you will not have to deal with them directly.

However, that does not mean you don’t need to understand them—as you will see, it is
important to understand the methods that DirectX uses, so that you can work with it
rather than against it.

Rendering the 3D Scene 203

11

,

,

16 1634xCH11 11/13/99 10:46 AM Page 203

Back-Face Culling
Looking back at the geometric models in Figures 10.2 and 10.3, you will notice that
many of the triangles that make up the surface are not visible from the angle you are
viewing them. No matter what angle you see them from, portions will always be hidden.

Although this might be obvious, however, it is not so apparent to a computer. When we
look at an object, we are able to instantly identify that the object takes up a volume of
space, and recognize that one side of this volume is facing us.

The computer, on the other hand, has no way of seeing the finished image or recognizing
it in this manner. All that it has to work with is a list of coordinates that form a series of
triangles, so we must rely upon computational means to determine visibility.

Before you look at the method Direct3D uses to provide back-face culling, you need to
take a closer look at how you construct triangles and connect them together in a model.

When defining a triangle within 3D space, you provide coordinates for three points. The
area defined has two sides, or faces. One of these faces, the front face, is usually on the
outside of the object. By definition, Direct3D assumes the front face of a triangle to be
the face where the points are defined in clockwise order. The other face (counter-
clockwise definition) is known as the back face. It is triangles whose back face is visible
to the viewer you must detect and remove.

In creating a polygon, you also implicitly supply an order. Although changing the order
of the vertexes used to define a triangle does not affect its shape, it does affect what is
known as the winding order of the triangle.

The winding order represents a direction of travel around the triangle, either clockwise or
counterclockwise (see Figure 11.4). One more feature of winding order is quite useful.
When a triangle is rotated 180°, its winding order reverses—this means that the winding
order of the front face and back face will always be opposites.

This is how DirectX determines whether our view of a polygon is facing the front or
back face of a triangle. It is assumed that all clockwise triangles are visible and that
counterclockwise triangles are not.

Although it provides a computationally inexpensive means of determining orientation, it
is also a potential pitfall. This is because it depends on you, as the developer, to always
provide triangles with a clockwise winding order. This is a common mistake, and one to
keep in mind if you find that your 3D code is missing polygons or simply failing to dis-
play a model.

204 Hour 11

16 1634xCH11 11/13/99 10:46 AM Page 204

Z-Buffering
As you learned in Hour 5, you can depict overlapping objects by drawing them in the
proper order. Whichever object is rendered last will appear to be closest to the viewer
because it hides any other objects that were previously rendered. This method is often
known as the Painter’s Algorithm because it relies upon painting over parts of the scene
that are no longer relevant.

This method can be used in 3D rendering as well, but it has a couple of downfalls. First,
all polygons must be sorted from back to front and rendered in order. Whenever objects
move, the list must be re-sorted.

Besides the additional processing required to use this method, it is unable to properly
render in certain situations. Consider Figure 11.5.

Rendering the 3D Scene 205

11

0,0,0
10,0,2

0,10,0

Clockwise Orientation
Visible

0,0,0
10,0,2

0,10,0

Counter–Clockwise Orientation
Not Visible - Culled

Y

Z

X

FIGURE 11.4
Winding order versus
orientation.

FIGURE 11.5
Intersecting surfaces in
a 3D scene.

In this scene, two surfaces intersect to form a corner. Portions of both polygons are
obscured by the other—so which one do you render first?

16 1634xCH11 11/13/99 10:46 AM Page 205

Using the painter’s algorithm, there is no acceptable order to render these polygons.
Figure 11.6 demonstrates the results of rendering the scene in left to right and right to
left. You can see that in each case, a portion of one of the polygons that should be
obscured is rendered on top of the other polygon, completely spoiling the 3D effect.

206 Hour 11

FIGURE 11.6
Failure of the Painter’s
Algorithm with over-
lapping objects.

The answer to this dilemma is that you must deal with surface visibility on a pixel-by-
pixel basis, rather than judging the whole polygon as visible or obscured.

In DirectX, this is accomplished using a z-buffer. The z-buffer is a special type of
DirectDraw surface that is used to store depth of field information while render-

ing the scene.

As each object is rendered, each pixel is checked against the z-buffer to see if an object
that is closer to the user has already been displayed at that pixel. If so, that portion of the
object is obscured, and the pixel is not written. If the value in the z-buffer is farther away
or has not been written to previously, the pixel is written to the screen. The distance from
the viewer of the object being rendered is then written to the corresponding pixel. An
illustration of this is provided in Figure 11.7.

Screen Z BufferFIGURE 11.7
Using a z-buffer to
properly render a
scene.

NEW TERM

16 1634xCH11 11/13/99 10:46 AM Page 206

Summary
In review of this hour, you have learned the following:

� You studied the physics behind your perception of depth and how it works to create
your field of view.

� You have learned how to set up the projection matrix and viewport to define the
viewing frustum.

� You took a look at two hidden surface removal techniques that are used in Direct3D.

Now that you have taken a look at the processes that are responsible for rendering your
3D scene, you are ready to move on to writing your first Direct3D application.

Q&A
Q If I want to provide multiple views at the same time, how can this be done? Is

it possible to have multiple viewports?

A Yes, you can use multiple viewports during the render cycle. When it comes time
to render, you change the viewport on the device and render the geometry you
want visible in that viewport.

Q You stated that normally the projection matrix is set only once, when I set up
my 3D device. Is it possible, with multiple viewports, to use a different projec-
tion matrix for each viewport?

A Yes it is. However, the projection matrix is associated with the device, not the
viewport. Because of this, it will be necessary to reset the projection matrix before
rendering to each viewport.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. Back-face culling in Direct3D by default removes which faces?

2. A viewport is set on which interface?

3. How many radians represent a complete revolution?

4. An angle of 45 degrees is equal to what angle in radians?

5. What value determines how far the viewer can see?

Rendering the 3D Scene 207

11

16 1634xCH11 11/13/99 10:46 AM Page 207

Exercises
1. If culling a triangle is faster than rendering it, it follows that not having to cull it in

the first place would be faster yet. Go to the DirectX documentation and examine
the description of IDirect3DDevice7::ComputeSphereVisibility. Consider ways
you can use sphere visibility to avoid sending objects to the device and improve
your application’s performance.

2. Z-buffers are useful in most rendering situations but are not always a perfect solu-
tion. Sketch some display you might present as a function of your DirectX applica-
tion. Assume you don’t want to blit, but just render everything in 3D. What do you
think would be the optimal render order, and can you identify things you might
want to render with the z-buffer turned off?

208 Hour 11

16 1634xCH11 11/13/99 10:46 AM Page 208

Hour
12 Creating Our First Direct3D Application

13 Adding Textures and Z-Buffers to the
Scene

14 Adding Realism Through Lighting

PART V
Input Devices

17 1634xPart V 11/13/99 11:03 AM Page 209

17 1634xPart V 11/13/99 11:03 AM Page 210

HOUR 12
Creating Our First
Direct3D Application

Now your studies of 3D concepts will finally pay off—you are ready to start
your first 3D application!

In this hour, you will

� Learn the different types of vertices that can be defined under
Direct3D.

� Learn how to set up a collection of vertices that will define a 3D
object.

� Learn the various forms in which 3D mesh data can be stored.
� Look at the various rendering methods that are used to determine the

appearance and quality of 3D images.
� Create your first Direct3D application.

18 1634xCH12 11/13/99 11:02 AM Page 211

Creating Objects in Direct3D
In the last couple of hours, you have learned much about how a 3D scene is rendered.
However, before you can render a scene, you will need to populate it with 3D models.

As you learned previously, objects in 3D are stored in meshes, which are composed of a
series of triangles that form the surface of the object. We will now take a detailed look at
how they are constructed and stored in Direct3D.

Vertices—A Thousand Points of Light
Just as we are composed of a massive collection of atoms that are interconnected to form
the whole, 3D models are also composed of fundamental, interconnected building blocks.

We know that meshes are made of triangles, but we can break a triangle down farther—
each triangle consists of three sides. These are in turn defined by the three points that
define the corners of the triangle. Each point is a vertex, a point where two or more lines
converge.

To define a mesh, I begin by defining a list of the vertices (plural of vertex) that
will be used to create the polygons of the mesh. Vertices contain the location in

3D space, as well as other information regarding the point that will be used to apply
color, lighting, and textures to the polygons that are constructed from them.

Direct3D provides methods for us to create our own “flexible vertex format,” defining
exactly what parameters we want to include with each vertex. Most of the time, however,
you will not need to define a custom format. Three standard formats are provided with
Direct3D that will suit your needs for most situations:

� D3DVERTEX—This vertex structure is used when lighting and transformation are to
be performed by DirectX. It includes the model space coordinates of the vertex and
the information needed for Direct3D to light the vertex.

� D3DLVERTEX—This is known as a pre-lit vertex. Using this structure specifies that,
while DirectX is to perform transformation, the application has already applied
lighting and added the light values to the vertex.

� D3DTLVERTEX—This structure provides a pre-lit and pre-transformed vertex. This
structure is often used when you want to specify a screen location directly to
Direct3D.

These preset vertex types each have their advantages, depending on the application to
which they are put. In the next few hours, you will get a chance to see how all three of
these structures fit into place. But first, let’s take a look at how we string the vertices
together into a mesh.

212 Hour 12

NEW TERM

18 1634xCH12 11/13/99 11:02 AM Page 212

The Three Mesh Formats
When we have decided where the vertices in our mesh will be, the next consideration is
how they are interconnected into polygons. To accommodate the many forms a mesh
might take, there are three basic methods for defining a mesh: triangle lists, triangle
strips, and triangle fans. These forms are known as primitives and are the building blocks
that we use to form complex objects.

Triangle Lists
The simplest and most versatile form of a mesh is the triangle list. The vertices of the list
are provided in an array, and each consecutive group of three vertices are assumed to
form a triangle (see Figure 12.1). Thus, in an array of nine vertices, the first three ver-
tices (0,1,2) would form a triangle, as would the next three vertices (3,4,5), and the last
three vertices (6,7,8). Note that a triangle list must always contain a multiple of three
vertices, or attempts to render it will fail.

Creating Our First Direct3D Application 213

12

0

2

1
6

5

34

78

FIGURE 12.1
The construction of a
triangle list.

Although this might be the simplest and most flexible means of defining a mesh, it is
also the least efficient. In most cases, a mesh will share many of its vertices between two
or more polygons. In a triangle list, these vertices must nonetheless be created individu-
ally for each polygon.

There are sometimes advantages to this, however. Even though vertices are shared, they
might have different characteristics aside from their common location, and thus a triangle
list will be merited.

Note that the preceding triangles all contain a clockwise winding order. Be
sure to maintain the proper winding order when defining a mesh, or back-
face culling will cause the polygons not to be displayed except when they
are facing away from the viewer.

18 1634xCH12 11/13/99 11:02 AM Page 213

Triangle Strips
Triangle strips are used to define a series of polygons, in cases in which each polygon
shares a side with the previous polygon. This provides us a significant savings in the
number of polygons that must be included in the mesh.

The first three points in a triangle strip define the first triangle and must be provided in a
clockwise winding order. Each additional point is then combined with the previous two
points to form an additional triangle, as shown in Figure 12.2. Note that the winding
order is reversed internally for every other triangle so that back face culling will work
properly.

214 Hour 12

1 3

0

5

4

7

62

FIGURE 12.2
The construction of a
triangle strip.

Triangle Fans
The third form that meshes can take is that of a triangle fan. A fan is a series of triangles
that share 2 points with each of their neighbors, one of which is common to all the trian-
gles. This forms a series of connected triangles that fan out from a central point, as
shown in Figure 12.3.

1 2

3

4

5

0

FIGURE 12.3
The construction of a
triangle fan.

18 1634xCH12 11/13/99 11:02 AM Page 214

Drawing a Mesh
After you have constructed a mesh as an array of vertices in one of the preceding forms,
you can render it to the screen by using the DrawPrimitive() function. The syntax of the
DrawPrimitive() function is as follows.

The Syntax for IDirect3Ddevice7::DrawPrimitive()
HRESULT DrawPrimitive(

D3DPRIMITIVETYPE dptPrimitiveType,
DWORD dwVertexTypeDesc,
LPVOID lpvVertices,
DWORD dwVertexCount,
DWORD dwFlags

);

The DrawPrimitive() function renders a primitive, applying transformation and lighting
if required. On success, this function returns DD_OK.

Parameters:

dptPrimitiveType A value defining the type of primitive to
render. Valid values include D3DPT_TRI-
ANGLELIST, D3DPT_TRIANGLESTRIP, and
D3DPT_TRIANGLEFAN. Additional values
are available for lists of lines or points.
See the DirectX SDK documentation for
further details.

dwVertexTypeDesc A combination of vertex format flags that
specify the type of vertex structure being
passed to this function.

lpvVertices Pointer to an array of vertices containing
the primitive.

dwVertexCount Number of vertices in the array.

dwFlags Optional flag to wait for completion of
function before return. This flag is rarely
used, and should normally be set to zero.

Creating Our First Direct3D Application 215

12

,
SY

N
TA

X

,

The DrawPrimitive function might only be used within the confines of a 3D
scene. See “Rendering the Scene,” later in this hour for more details.

18 1634xCH12 11/13/99 11:02 AM Page 215

Indexing a Mesh
To provide better flexibility and efficiency, Direct3D provides one more option that you
can use with any of the preceding forms: indexing.

As you will begin to see when you attempt to apply the primitive forms to real world
shapes, objects often do not fall into a fixed mold.

Consider, for example, a simple cube. Four of its surfaces can easily be made into a strip,
but you would then have to make separate strips for either end. This would require stor-
ing 16 vertices, even though there are only 8 unique points that define the cube.
Switching to a triangle list would allow you to draw the cube as a single primitive, but
would require 36 vertices instead!

When rendering an indexed primitive, you provide an array of vertices, as before. You
also pass a list of WORDs, which represent the order the vertices are to be used to construct
a primitive. The advantage of this is that you can re-use the points in the array, and they
only need to be transformed and lit once for the entire primitive.

An example of this is shown in Figure 12.4, illustrating how an index would be created
to construct the cube we discussed as a triangle list, using only 8 vertices.

216 Hour 12

7 5

4

20

1 3

6

Index Values

0 1 2
2 1 3

2 3 4
4 3 5

4 5 6
6 5 7

6 7 0
0 7 1

1 7 3
3 7 5

0 2 6
2 4 6

FIGURE 12.4
Constructing a cube
using an indexed trian-
gle list.

Drawing an Indexed Primitive
Drawingan indexed primitive is very similar to drawing a normal primitive. The
DrawIndexedPrimitive() function uses the same parameters as the DrawPrimitive()
function, except for the addition of a pointer and length of an array of indices.

The Syntax for IDirect3Ddevice7::DrawIndexedPrimitive()
HRESULT DrawPrimitive(

D3DPRIMITIVETYPE dptPrimitiveType,
DWORD dwVertexTypeDesc,
LPVOID lpvVertices,
DWORD dwVertexCount,,

SY
N

TA
X

18 1634xCH12 11/13/99 11:02 AM Page 216

LPWORD lpwIndices,
DWORD dwIndexCount,
DWORD dwFlags

);

The DrawPrimitive() function renders a primitive, applying transformation and lighting
if required. On success, this function returns DD_OK.

Parameters:

dptPrimitiveType A value defining the type of primitive to
render. Valid values include D3DPT_TRI-
ANGLELIST, D3DPT_TRIANGLESTRIP, and
D3DPT_TRIANGLEFAN. Additional values
are available for lists of lines or points.
See the DirectX SDK documentation for
further details.

dwVertexTypeDesc A combination of vertex format flags that
specify the type of vertex structure being
passed to this function.

lpvVertices Pointer to an array of vertices containing
the primitive.

dwVertexCount Number of vertices in the array.

lpwIndices Pointer to an array of type WORD that con-
tains indices into the vertex list.

dwIndexCount Number of indices in the index array.

dwFlags Optional flag to wait for completion of
function before return. This flag is rarely
used, and should normally be set to zero.

Setting Out on Your First Direct3D
Adventure

By now, I imagine you are itching to start putting some of this knowledge to use. Well,
now is the time—you are ready to code your first application in Direct3D.

The sample application you will create in this hour will create a series of rectangular
blocks aligned to a grid, and will allow you to view them from any angle using keyboard
controls. Over the hours to come, you will evolve this application into a virtual city.

Creating Our First Direct3D Application 217

12

,

,

18 1634xCH12 11/13/99 11:02 AM Page 217

Creating a Simple 3D Object
You will begin this project by defining a simple 3D object, using what you have learned
about vertices and the various types of primitives available.

To implement the rectangular blocks in your soon to be constructed city, you will create
a class of type CCube. The class will construct an array of indexed vertices, and provide a
function to draw the object using a Direct3DDevice7 object.

Begin by creating a new Win32 project, as you have done in previous hours. If you are
using Visual C++, create a generic class from the class view window, and title it as
CCube. The files CUBE.CPP and CUBE.H will be created. For other compilers, create
these files and add them to the project in the appropriate manner for your compiler.

First, you will create a class definition, which will be contained in the CUBE.H file. The
definition is shown in Listing 12.1.

LISTING 12.1 Class Definition for CCube

1: class CCube
2: {
3: public:
4: CCube(D3DVECTOR origin,D3DVECTOR size,float R,float G,float B);
5: virtual ~CCube();
6: void draw(LPDIRECT3DDEVICE7 device);
7: D3DLVERTEX *verts;
8: };

As you can see, this class has three functions and only one data member. The following
list is a brief overview of what these pieces do.

� CCube() is the constructor and is responsible for allocating the vertices and calcu-
lating their positions. The parameters include a starting location with the minimum
X,Y, and Z values, a vector specifying the size of the object along each axis, and
the RGB values that determine the color of the block.

� ~CCube() is the destructor, and is responsible for releasing the memory that was
allocated for storage of the object’s vertices.

� The draw() function draws the block to a 3D device.
� The verts member is a pointer that will be used to point to an array of pre-lit ver-

tices that will be used to define the object.

Next you will create the class member functions in the CUBE.CPP file. To begin with,
you will include the header files for Direct3D, as well as the header for the class defini-
tion of CCube, as shown in Listing 12.2.

218 Hour 12

18 1634xCH12 11/13/99 11:02 AM Page 218

LISTING 12.2 Header Files Included in CUBE.CPP

1: #include “stdafx.h”
2: #define D3D_OVERLOADS
3: #include “d3d.h”
4: #include “Cube.h”

The D3D.H file provides basic access to Direct3D. The addition of the D3D_OVERLOADS
prior to loading the header causes the Direct3D header to make certain overloaded opera-
tors and constructors available. I will introduce some of these helpful tools along the
way, and you can find additional information through the SDK documentation in the
Direct3D Immediate Mode Reference.

Our next step will be to define the index that will be used to create the triangles that con-
stitute the block, from the eight points that define its corners. For an illustration of how
the vertices and indices of the block will be mapped, see Figure 12.4. The definition of
the index array is shown in Listing 12.3.

LISTING 12.3 Defining the Index Values for a Block

1: WORD cube_index[36]={0,1,2,
2: 2,1,3,
3: 2,3,4,
4: 4,3,5,
5: 4,5,6,
6: 6,5,7,
7: 6,7,0,
8: 0,7,1,
9: 1,7,3,
10: 3,7,5,
11: 0,2,6,
12: 2,4,6
13: };

Note that this is a global array, which will be shared by all CCube instances. Because the
order of construction is the same for all blocks, this only needs to be defined once. The
location, shape, and size of the blocks will be determined by the values that are set in the
vertices and are independent of the index.

At this point, you are ready to set up the constructor for the CCube class. The function
will be passed a starting coordinate, corresponding to the minimum value on each axis,
as well as a vector containing the dimensions of the block and color values.

A couple of things should be noted about this class. The first is that the blocks can only
be oriented along the X, Y, and Z axis because you do not have a definition of an angle
to offset the block. This can be achieved at render time, by modifying the world matrix.

Creating Our First Direct3D Application 219

12

18 1634xCH12 11/13/99 11:02 AM Page 219

The other item of note is that you are using pre-lit vertices to define the cube. What this
means is that you provide the final color for each vertex within the vertex structure. This
would not be the case if we were using Direct3D to provide lighting of the object.

Because I have not yet covered this issue, we will use pre-lit vertices and create some gen-
eralized lighting values to provide an appearance of lighting on the object. This method
also has the advantage of higher performance because it does not require lighting to be
calculated for each frame. This is often a means for fast rendering of objects, such as
buildings viewed in sunlight, that are subject to static lighting conditions.

Pre-lit vertices are defined using the D3DLVERTEX structure, which is defined as follows.

The Syntax for a D3DLVERTEX Structure
typedef struct _D3DLVERTEX {

union {
D3DVALUE x;
D3DVALUE dvX;

};
union {

D3DVALUE y;
D3DVALUE dvY;

};
union {

D3DVALUE z;
D3DVALUE dvZ;

};
DWORD dwReserved;
union {

D3DCOLOR color;
D3DCOLOR dcColor;

};
union {

D3DCOLOR specular;
D3DCOLOR dcSpecular;

};
union {

D3DVALUE tu;
D3DVALUE dvTU;

};
union {

D3DVALUE tv;
D3DVALUE dvTV;

};
} D3DLVERTEX, *LPD3DLVERTEX;

As with the D3DVECTOR structure that I introduced in Hour 10, “Importing 3D Objects
and Animations into the Scene,” the first three members of the structure provide a 3D
coordinate for the vertex.

220 Hour 12

,
SY

N
TA

X
,

18 1634xCH12 11/13/99 11:02 AM Page 220

The color and specular elements determine the color of the object. The color variable
sets what is known as the diffuse color, which is the overall color that will be applied for
that region of any polygons that incorporate the vertex. The specular component is used
to apply a glossy shine to polygons.

You will learn more about how these are applied in the next couple of hours, as you learn
more about how the lighting pipeline of Direct3D is used to light a scene. We will also
explore the tu and tv variables in the next hour, when I cover the application of textures
to a surface. These values are used to determine how a texture lines up with the vertices
of an object, and correspond to a relative location along the X and Y axis of the two-
dimensional textures. These values range from 0.0 to 1.0.

So let’s start building our constructor. As shown in Listing 12.4, we begin by allocating
an array for the eight(8) vertices that will store the corners of the block. We then calcu-
late the maximum values for X, Y, and Z by adding the size vector passed to the function
to the origin vector.

LISTING 12.4 Allocating Vertices and Calculating Extents

1: CCube::CCube(D3DVECTOR origin,D3DVECTOR size,float R,float G,float B)
2: {
3: // allocate the vertex array
4:
5: verts=new D3DLVERTEX[8];
6:
7: // calculate far corner of the cube
8:
9: D3DVECTOR extent=origin+size;

Note that we are able to calculate the extents by adding the two vectors, even though
they are complex structures. This is because of our definition of the constant D3D_
OVERLOADS that I discussed earlier. It includes simple mathematical operations on various
structures defined in Direct3D, saving us from handling each member variable individu-
ally.

In Listing 12.5, we calculate lighting values for the vertices. The lighting will be created
from a precalculated table that will determine the light intensity for each point. This esti-
mation of lighting values, though a bit rough, will provide a reasonably realistic set of
highlights and shadows that Direct3D will stretch evenly across the surfaces when they
are rendered.

Creating Our First Direct3D Application 221

12

,

,

18 1634xCH12 11/13/99 11:02 AM Page 221

LISTING 12.5 Precalculating Lighting Values for the Vertices

1: // calculate highlight, midtone, and shadow colors
2:
3: D3DCOLOR clr[8];
4: float luma[8]={0.7f,1.0f,0.5f,0.8f,0.15f,0.45f,0.35f,0.65f};
5: for (int i=0;i<8;i++)
6: clr[i]=D3DRGB(R*luma[i],G*luma[i],B*luma[i]);

Finally, we will define the location and light color for each vertex, as shown in Listing
12.6. Note the construction of D3DVECTOR and D3DLVERTEX structures using a single state-
ment. This is yet another benefit of the D3D_OVERLOADS definition.

LISTING 12.6 Defining the Vertices

1: // set up the 8 corners of the cube
2:
3: verts[0]=D3DLVERTEX(D3DVECTOR(origin.x,origin.y,origin.z),

clr[0],0,0.0f,0.0f);
4: verts[1]=D3DLVERTEX(D3DVECTOR(origin.x,extent.y,origin.z),

clr[1],0,0.0f,0.0f);
5: verts[2]=D3DLVERTEX(D3DVECTOR(extent.x,origin.y,origin.z),

clr[2],0,0.0f,0.0f);
6: verts[3]=D3DLVERTEX(D3DVECTOR(extent.x,extent.y,origin.z),

clr[3],0,0.0f,0.0f);
7: verts[4]=D3DLVERTEX(D3DVECTOR(extent.x,origin.y,extent.z),

clr[4],0,0.0f,0.0f);
8: verts[5]=D3DLVERTEX(D3DVECTOR(extent.x,extent.y,extent.z),

clr[5],0,0.0f,0.0f);
9: verts[6]=D3DLVERTEX(D3DVECTOR(origin.x,origin.y,extent.z),

clr[6],0,0.0f,0.0f);
10: verts[7]=D3DLVERTEX(D3DVECTOR(origin.x,extent.y,extent.z),

clr[7],0,0.0f,0.0f);
11: }

To complement the constructor, we must also create a destructor that will release the
memory we have allocated for the vertices, as shown in Listing 12.7.

LISTING 12.7 Destructor for CCube Class

1: #define SafeDelete(x) if (x) {delete x;x=NULL;}
2:
3: CCube::~CCube()
4: {
5: // de-allocate the vertex array
6:
7: SafeDelete(verts);
8: }

222 Hour 12

18 1634xCH12 11/13/99 11:02 AM Page 222

Rendering the Object
To round up the class, we have one final function to complete. The draw() function
requires only a single line of code to render the object, as shown in Listing 12.8.

LISTING 12.8 Function to Draw the CCube Object

1: void CCube::draw(LPDIRECT3DDEVICE7 device)
2: {
3: device->DrawIndexedPrimitive(D3DPT_TRIANGLELIST,D3DFVF_LVERTEX,
4: verts,8,
5: cube_index,36,
6: 0);
7: }

Of course, although it might only require a single line, the parameter list is a bit inten-
sive. Take a moment to review the definition of the DrawIndexedPrimitive() function,
which I defined earlier in this hour in “Drawing an Indexed Primitive,” and then let’s
take a look at how we have used this function.

To facilitate the reading of this statement, the preceding function call is broken into mul-
tiple lines, each of which contains one or more related parameters. The first pair of para-
meters tells Direct3D how the data that you are passing is formatted.
D3DPT_TRIANGLELIST specifies that the primitive will be defined as a series of individual
triangles. Each set of three (3) consecutive indices will constitute a triangle. The second
parameter defines what format of vertex is being passed to the function. In this case, the
D3DVFVF_LVERTEX flag indicates that an array of D3DLVERTEX structures will be provided.

Creating Our First Direct3D Application 223

12
Remember that a triangle list must always consist of a multiple of three
points. In the case of an indexed primitive, this means that the index count
must be a multiple of three. The vertex count does not share this require-
ment, but must contain enough vertices to accommodate the highest value
in the index array.

The second group contains a pointer to an array of vertices of the specified type, and a
number specifying the number of vertices in the array.

Next, an array of indexes is provided, along with a count of the number of indexes pre-
sent in the array. These indexes will correspond to the elements in the vertex array, with
an index of 0 corresponding to the first vertex in the array.

The final parameter is used to determine the behavior of the DrawIndexedPrimitive()
function. In this case, you use the D3DDP_DONOTLIGHT to notify Direct3D that you have
already lit the vertices, so that it can skip the lighting pipeline for this primitive.

18 1634xCH12 11/13/99 11:02 AM Page 223

Getting Down to Business
Now that we have established a class-based object that you can use to define a 3D cube,
it is time to start structuring your application.

You will begin, as with any project, by listing the required header inclusions and defini-
tions, including the class name and caption for your application. Listing 12.9 exhibits the
includes for the sample application.

LISTING 12.9 Includes and Definitions for a 3D Application

1: //------ Include Files ------//
2:
3: #include “stdafx.h”
4: #define D3D_OVERLOADS
5: #define INITGUID
6: #include “windef.h”
7: #include <mmsystem.h>
8: #include <ddraw.h>
9: #include <d3d.h>
10: #include <d3dtypes.h>
11: #include “d3dutil.h”
12: #include “d3dmath.h”
13: #include “cube.h”
14:
15: #define SafeRelease(x) if (x) { x->Release(); x=NULL;}
16: #define SafeDelete(x) if (x) {delete x;x=NULL;}
17:
18: //------ Window Class Information ------//
19:
20: static char szClass[] = “XmplHr12Class”;
21: static char szCaption[] = “Example - Hour 12”;

Note that I have added several header files that were not in previous applications. They
are as follows:

� D3D.H provides definitions of the interfaces in Direct3D.
� D3DTYPES provides definitions of data structures used by Direct3D.
� D3DUTIL.H and D3DMATH.H are both found in the SDK sample directory for

D3DIM, under the D3DFRAME directory. They provide helper functions that can
be used for a variety of math and utility functions.

� CUBE.H, which we have previously created to contain the class definition for our
CCube object.

Note that in addition to including the proper header files, you will need to add the
D3DIM.LIB library file to the link list in the project settings. For more information on
how these settings are accessed, refer to “Setting Up the Project” in Hour 2.

224 Hour 12

18 1634xCH12 11/13/99 11:02 AM Page 224

Global Interface Pointers
As in previous examples, I will establish global pointers to contain the DirectX interfaces
that we create. In addition to the DirectDraw object and the surfaces of the flipping chain,
two additional objects will be created for a Direct3D application. They are as follows:

1. A Direct3D7 object, which will provide access to the Direct3D API.

2. A Direct3DDevice7 interface, which will be used to access the rendering capabili-
ties of the video adapter through Direct3D.

The global definitions for these interface pointers are illustrated in Listing 12.10.

LISTING 12.10 Global Interface Definitions

1: //------ Global Interface Pointers ------//
2:
3: LPDIRECTDRAW7 lpDD=NULL;
4: LPDIRECTDRAWSURFACE7 lpDDSPrimary=NULL;
5: LPDIRECTDRAWSURFACE7 lpDDSBack=NULL;
6: LPDIRECT3D7 lpD3D=NULL;
7: LPDIRECT3DDEVICE7 lpDevice=NULL;

To provide persistent storage of the viewing parameters, we will create global variables
to store information on the viewer’s current position and their rate of motion.

In this example, the view will orbit around the set of objects, always facing the center of
the group. In addition, the user will be able to move the camera location up and down,
while maintaining the same viewing target. This will allow the objects to be viewed from
any angle.

As you will soon explore, you can use the location and viewing angle to calculate a vec-
tor that represents the direction the viewer is facing. By defining the location, and a point
the user is looking at, you can then create an appropriate viewing matrix. This informa-
tion will be contained in the variables defined in Listing 12.11.

LISTING 12.11 Storage of Viewer Location and Direction

1: //----- Rotation position and speed -----//
2:
3: float rotAngle=g_PI; // current angle
4: float rotVel=0.0f; // current velocity of spin
5:
6: //----- Elevation of viewer and vertical speed -----//
7:
8: float elevation=350.0f; // current elevation
9: float liftVel=0.0f; // rate of rise / decent

Creating Our First Direct3D Application 225

12

continues

18 1634xCH12 11/13/99 11:02 AM Page 225

10:
11: //----- Define distance of viewer orbit from target ------//
12:
13: #define ORBIT 800.0f

Next, you will create an array of pointers that will reference a set of CCube objects that
you will create. The blocks will be spaced along a two dimensional grid, four blocks
wide and four blocks deep. The size specification and array declaration shown in Listing
12.12 will contain these objects.

LISTING 12.12 Object Storage for an Array of Cubes

1: //------ Storage for Cube Objects -----//
2:
3: #define NUM_ROWS 4
4: #define NUM_COLUMNS 4
5:
6: CCube *cubes[NUM_ROWS][NUM_COLUMNS];

Finally, you will define a list of error strings to describe possible failure modes, as you
have performed in your previous applications and shown in Listing 12.13. You will also
create a list of function prototypes so that you do not have to depend on a specific order
of function definition within the source code.

LISTING 12.13 Error Strings and Function Prototypes

1: //------ Error Return String ------//
2:
3: const char *ErrStr=NULL;
4:
5: //------ Error Messages ------//
6:
7: const char Err_Reg_Class[] = “Error Registering Window Class”;
8: const char Err_Create_Win[] = “Error Creating Window”;
9: const char Err_DirectDrawCreate[] = “DirectDrawCreate FAILED”;
10: const char Err_Query[] = “QueryInterface FAILED”;
11: const char Err_Coop[] = “SetCooperativeLevel FAILED”;
12: const char Err_CreateSurf[] = “CreateSurface FAILED”;
13: const char Err_DispMode[] = “Error Setting Display Mode”;
14: const char Err_Device[] = “Device Creation Failed”;
15: const char Err_SetView[] = “Viewport settings failed”;
16:
17: //------ Function Prototypes -----//
18:
19: void Cleanup();

226 Hour 12

LISTING 12.11 continued

18 1634xCH12 11/13/99 11:02 AM Page 226

20: void create_objects();
21: static BOOL Init(HINSTANCE hInstance, int nCmdShow);
22: BOOL init_d3d();
23: BOOL init_ddraw(HWND hWnd);
24: void render_frame(float elapsed);

Initializing the Application
The first function we will write is our program initialization. We will begin as we have in
past applications by generating a window and initializing DirectDraw. Because our ini-
tialization function is growing, we will split the DirectDraw initialization into a separate
function, init_ddraw(). This portion of the Init() function is shown in Listing 12.14.

LISTING 12.14 The Initialization of the Application Window and DirectDraw

1: //------ Function to Initialize DirectDraw and the Application ------//
2:
3: static BOOL Init(HINSTANCE hInstance, int nCmdShow)
4: {
5: WNDCLASS wc;
6:
7: // Set up and register window class
8:
9: wc.style = CS_HREDRAW | CS_VREDRAW;
10: wc.lpfnWndProc = (WNDPROC) WindowProc;
11: wc.cbClsExtra = 0;
12: wc.cbWndExtra = sizeof(DWORD);
13: wc.hInstance = hInstance;
14: wc.hIcon = NULL;
15: wc.hCursor = LoadCursor(NULL, IDC_ARROW);
16: wc.hbrBackground = (HBRUSH) GetStockObject(BLACK_BRUSH);
17: wc.lpszMenuName = NULL;
18: wc.lpszClassName = szClass;
19: if (!RegisterClass(&wc)) {
20: ErrStr=Err_Reg_Class;
21: return FALSE;
22: }
23:
24: // Get dimensions of display
25:
26: int ScreenWidth = GetSystemMetrics(SM_CXSCREEN);
27: int ScreenHeight = GetSystemMetrics(SM_CYSCREEN);
28:
29: // Create a window and display
30:
31: HWND hWnd;
32:

Creating Our First Direct3D Application 227

12

continues

18 1634xCH12 11/13/99 11:02 AM Page 227

33: hWnd = CreateWindow(szClass, // class
34: szCaption, // caption
35: WS_VISIBLE|WS_POPUP, // style
36: 0, // left
37: 0, // top
38: ScreenWidth, // width
39: ScreenHeight, // height
40: NULL, // parent window
41: NULL, // menu
42: hInstance, // instance
43: NULL); // parms
44: if (!hWnd) {
45: ErrStr=Err_Create_Win;
46: return FALSE;
47: }
48: ShowWindow(hWnd, nCmdShow);
49: UpdateWindow(hWnd);
50:
51: // initialize DirectDraw
52:
53: if (!init_ddraw(hWnd)) return FALSE;

To complete the initialization, we must initialize Direct3D and create the objects that will
exist in our scene. These tasks will be performed in separate functions, which will be
called from the Init() functions as shown in Listing 12.15.

LISTING 12.15 Initialization of Direct3D and the 3D Scene

1: // initialize Direct3D
2:
3: if (!init_d3d()) return FALSE;
4:
5: // create 3D objects
6:
7: create_objects();
8:
9: // return success to caller
10:
11: return TRUE;
12: }

Initializing DirectDraw for Use with Direct3D
To use DirectDraw with Direct3D, one simple consideration must be made. For the
DirectDraw surfaces to be compatible with the 3D device, the primary surface must be
created with the DDSCAPS_3DDEVICE flag.

228 Hour 12

LISTING 12.14 continued

18 1634xCH12 11/13/99 11:02 AM Page 228

The init_ddraw() function that we call from Init() is listed in Listing 12.16. With the
exception of being moved to a separate function, the only modification is the addition of
the proper flag to inform DirectDraw that it will be used by Direct3D.

Listing 12.16 Initializing DirectDraw to be Compatible with Direct3D

1: BOOL init_ddraw(HWND hWnd)
2: {
3: // Create the main DirectDraw object
4:
5: HRESULT ddrval = DirectDrawCreateEx(NULL, (void**)&lpDD,

IID_IDirectDraw7, NULL);
6: if (ddrval != DD_OK) {
7: ErrStr=Err_DirectDrawCreate;
8: return FALSE;
9: }
10:
11: // Set our cooperative level
12:
13: ddrval = lpDD->SetCooperativeLevel(hWnd,

DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);
14: if (ddrval != DD_OK) {
15: ErrStr=Err_Coop;
16: return FALSE;
17: }
18:
19: // Set the display mode
20:
21: ddrval = lpDD->SetDisplayMode(640, 480, 16, 0, 0);
22: if (ddrval !=DD_OK) {
23: ErrStr=Err_DispMode;
24: return FALSE;
25: }
26:
27: // Create the primary surface with 1 back buffer
28:
29: DDSURFACEDESC2 ddsd;
30: ZeroMemory(&ddsd,sizeof(ddsd));
31: ddsd.dwSize = sizeof(ddsd);
32: ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
33: ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
34: DDSCAPS_FLIP | DDSCAPS_3DDEVICE |
35: DDSCAPS_COMPLEX;
36: ddsd.dwBackBufferCount = 1;
37: ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);
38: if (ddrval!=DD_OK) {
39: ErrStr=Err_CreateSurf;
40: return FALSE;
41: }

Creating Our First Direct3D Application 229

12

continues

18 1634xCH12 11/13/99 11:02 AM Page 229

42:
43: // Fetch back buffer interface
44:
45: DDSCAPS2 ddscaps;
46: ZeroMemory(&ddscaps,sizeof(ddscaps));
47: ddscaps.dwCaps=DDSCAPS_BACKBUFFER;
48: ddrval=lpDDSPrimary->GetAttachedSurface(&ddscaps,&lpDDSBack);
49: if (ddrval!=DD_OK) {
50: ErrStr=Err_CreateSurf;
51: return FALSE;
52: }
53:
54: // return success to caller
55:
56: return TRUE;
57: }

Initializing Direct3D
Now that you have initialized DirectDraw properly for use with Direct3D, you must
establish interfaces to allow you to render using Direct3D. As you saw in the last hour,
under “Hierarchy of Direct3D Immediate Mode,” two interfaces must be created:
IDirect3D7 and IDirect3Ddevice7.

First, you will query your IDirectDraw7 interface for a pointer to an IDirect3D7 inter-
face, which will be used for access to Direct3D. After this is complete, you will create a
3D device, which will handle rendering to the screen surface.

There will usually be several possible 3D devices to choose from, depending on what
hardware is available on the system. Ideally, you would ask the IDirect3D7 interface to
provide you with a list of these devices and select the optimum device for your applica-
tion. However, for the purpose of your first application, you are going to take a bit of a
shortcut.

When you call CreateDevice(), you pass a GUID as the first parameter. This identifier
specifies which device you want to use to render 3D graphics. Rather than searching the
system, however, Direct3D provides a shortcut in the form of four pre-defined constants:

� IID_IDirect3DHALDevice—Requests that hardware acceleration be used, render-
ing 3D through the Hardware Abstraction Layer (HAL). Calling CreateDevice()
with this identifier will fail if there is no 3D accelerator available on the system.

� IID_IDirect3DTnLHalDevice—Same as previous, but provides transformation and
lighting acceleration in hardware.

� IID_IDirect3DRGBDevice—Specifies that software emulation (HEL) is to be used
for 3D rendering. Although this does not take advantage of 3D hardware and offers

230 Hour 12

Listing 12.16 continued

18 1634xCH12 11/13/99 11:02 AM Page 230

slow performance, it will always be available on any Direct3D compatible system.
This provides a fallback solution for systems without 3D support in hardware.

� IID_IDirect3DMMXDevice—Requests that a special version of software emulation be
used, optimized for processors that support the MMX instruction set. Calling
CreateDevice() with this identifier will fail if MMX is not supported on the system.

With these identifiers in hand, you will use a trial and error approach to creating a
device. That is, you will first attempt to create a HAL device because this will provide
you with far greater performance than software emulation.

If this fails, you will not exit the program with an error. Instead, you will then attempt to
create an MMX device. If this too fails, you will attempt to create a standard HEL
device—the Hardware Emulation Layer provides a final safety net, allowing you to ren-
der on devices without hardware acceleration.

If all four attempts should fail, you will then exit the program with an error. The code for
our 3D interface creation is shown in Listing 12.17.

LISTING 12.17 Creating the Direct3D Object and Device Interfaces

1: BOOL init_d3d()
2: {
3: // get master 3D interface
4:
5: if (FAILED(lpDD->QueryInterface(IID_IDirect3D7, (LPVOID *)&lpD3D))) {
6: ErrStr=Err_Query;
7: return FALSE;
8: }
9:
10: // set up the best device interface
11:
12: if (lpD3D->CreateDevice(IID_IDirect3DTnLHalDevice,

lpDDSBack,&lpDevice)!=D3D_OK)
13: if (lpD3D->CreateDevice(IID_IDirect3DHALDevice,

lpDDSBack,&lpDevice)!=D3D_OK)
14: if (lpD3D->CreateDevice(IID_IDirect3DMMXDevice,

lpDDSBack,&lpDevice)!=D3D_OK)
15: if (lpD3D->CreateDevice(IID_IDirect3DRGBDevice,

lpDDSBack,&lpDevice)!=D3D_OK)
16: return FALSE;

Setting Up a Viewport
When you have successfully attained a 3D device, you next must set up a viewport to
define the region of the screen that the scene will be rendered to. For this example, I will
use the full 640×480 screen surface. The code for setting up the viewport is shown in
Listing 12.18.

Creating Our First Direct3D Application 231

12

18 1634xCH12 11/13/99 11:02 AM Page 231

LISTING 12.18 Setting Up the 3D Viewport

1: // set up the viewport
2:
3: D3DVIEWPORT7 view;
4: view.dwX=0;
5: view.dwY=0;
6: view.dwWidth=640;
7: view.dwHeight=480;
8: view.dvMinZ=0.0f;
9: view.dvMaxZ=1.0f;
10: if (lpDevice->SetViewport(&view)!=D3D_OK) {
11: ErrStr=Err_SetView;
12: return FALSE;
13: }

Next, we will create the projection matrix, which will determine our field of view and
perception of depth. For this application, we will use a 45 degree field of view. We will
set our near clipping plane to 10 and f to 2000 units.

Because angles are always expressed in radians, we will have to convert this angle by
dividing by 2 pi. This results in an angle of 0.785 radians, as seen in Listing 12.19.

LISTING 12.19 Setting Up the Projection Matrix

1: // set the projection transform
2:
3: D3DMATRIX proj_m;
4: D3DUtil_SetProjectionMatrix(proj_m, 0.785f, 1.333f, 10.0f, 2000.0f);
5: lpDevice->SetTransform(D3DTRANSFORMSTATE_PROJECTION,&proj_m);
6:
7: // return success to caller
8:
9: return TRUE;
10: }

Object Creation
The stage has now been set—the 3D engine is ready to go. As your final act of creation,
all that is needed is to create 3D objects to populate the scene. For this application, create
a two-dimensional array of CCubes, as shown in Listing 12.20.

LISTING 12.20 Creating the 3D Objects

void create_objects()
{

// create cubes on a grid

for (int i=0;i<NUM_ROWS;i++)

232 Hour 12

18 1634xCH12 11/13/99 11:02 AM Page 232

for (int j=0;j<NUM_COLUMNS;j++)
cubes[i][j]=new CCube(

D3DVECTOR(125.0f-100.0f*j, 0.0f, 125.0f-100.0f*i),
D3DVECTOR(50.0f,150.0f,50.0f),
0.95f,1.0f,0.8f);

}

Putting It in Motion
The render_frame() function will handle the 3D display generation, including calculat-
ing the movement of the viewing position and creating the view matrix.

The application will allow the user to fly around the set of blocks that you have con-
structed. By using the arrow keys, they will be able to circle around the periphery of the
structures while the camera always tracks to the center of the scene (see Figure 12.5).

Creating Our First Direct3D Application 233

12

FIGURE 12.5
An orbital tour of the
3D city.

The rendering process will start by checking for lost surfaces and restoring them, and
adjusting the elevation and rotation angle according to the velocity values that you will
establish from keyboard input. The updated position will include the viewer’s angle in
relation to the circle, as well as their elevation off the ground. The code for this is shown
in Listing 12.21.

LISTING 12.21 Getting Ready to Render

1: void render_frame(float elapsed)
2: {
3: // recover any lost surfaces

continues

18 1634xCH12 11/13/99 11:02 AM Page 233

4:
5: if (lpDDSPrimary->IsLost()==DDERR_SURFACELOST)
6: lpDDSPrimary->Restore();
7: if (lpDDSBack->IsLost()==DDERR_SURFACELOST)
8: lpDDSBack->Restore();
9:
10: // increment viewer position
11:
12: elevation+=liftVel*elapsed;
13: rotAngle+=rotVel*elapsed;

After you have updated the position, you have all the information needed to determine
their location on the circle. This is achieved through the use of the sin() and cos()
functions. Because this might not be part of your normal routine, I will take a minute to
review how this works—this is one of several math concepts you will have to work with
quite a bit in the hours ahead.

Figure 12.6 illustrates graphs of both functions. A couple of interesting things can be
noted about these functions, particularly in considering how they could be used to create
a circle:

� It is cyclic, and will repeat indefinitely.
� It cycles back to the start every 2 pi.
� The two functions are identical, but out of sync.

234 Hour 12

Listing 12.21 continued

SIN θ

COS θ

0

1

0

-1

1

0

-1

Π/2 Π 3Π/2
FIGURE 12.6
Characteristics of the
sin() and cos() func-
tions.

The first two characteristics are obvious similarities to the nature of a circle. The third
similarity is a little harder to put your finger on. Take a look at Figure 12.7, which illus-
trates a circle mapped on the X, Z plane.

18 1634xCH12 11/13/99 11:02 AM Page 234

If you trace around the circle and observe the changes in the X and Z values, you will
find that they exactly correlate to the sin() and cos() functions. During a complete
cycle around the circle, both the X and the Z values cycle through a maximum and mini-
mum value and return to the starting point at 2pi radians. The difference between X and
Z, however, is that they are out of sync from each other by a quarter of a revolution.

Thus, sin() and cos() will be used to determine the x and z coordinate values of the cir-
cle. The y coordinate will be a set height, which can be modified by user input.

The output from sin() and cos() ranges from -1.0 to 1.0. To calculate a point of a circle
of a given size, pass the angle from the center to that point in the sin() and cos() func-
tions and multiply the results by the circle’s radius. Listing 12.22 shows how this is
implemented in the sample application.

LISTING 12.22 Calculating Viewer Location

1: // calculate current viewer position
2:
3: D3DVECTOR view_loc;
4: view_loc.y=elevation; // set elevation
5: view_loc.x=sinf(rotAngle)*ORBIT; // calculate position on x,z plane
6: view_loc.z=cosf(rotAngle)*ORBIT;

When you have determined your location in 3D space, you can then create and set the
view matrix using the helper function provided in the D3DUtil libraries. You will create a
view pointing from the viewers location to the center of the 3D scene, as shown in
Listing 12.23.

Creating Our First Direct3D Application 235

12

Z

0,0

X

θ=3Π/2 θ = Π/2

θ=Π

θ=0

Min X Max X

Min Z

Max Z

FIGURE 12.7
Characteristics of a
circle.

18 1634xCH12 11/13/99 11:02 AM Page 235

LISTING 12.23 Setting the View Transform

1: // create and set the view matrix
2:
3: D3DMATRIX view_matrix;
4: D3DUtil_SetViewMatrix(view_matrix,
5: view_loc,
6: D3DVECTOR(0.0f,0.0f,0.0f),
7: D3DVECTOR(0.0f,1.0f,0.0f));
8: lpDevice->SetTransform(D3DTRANSFORMSTATE_VIEW,&view_matrix);

Rendering the Scene
The view has now been properly set so that the 3D scene can be rendered. This will be
accomplished using the DrawPrimitive methods, but before rendering you must make
preparations for the viewport to be rendered.

Before rendering each frame, it will be necessary to clear the surface of any previous
images. This is accomplished using the IDirect3DDevice7::Clear() command, as
shown in the following.

The Syntax for IDirect3Ddevice7::Clear()
HRESULT Clear(

DWORD dwCount,
LPD3DRECT lpRects,
DWORD dwFlags,
DWORD dwColor,
D3DVALUE dvZ,
DWORD dwStencil

);

The Clear() function is used to clear the rendering target, and can also clear associated
z-buffers and stencil buffers. On success, this function returns D3D_OK.

Parameters:

dwCount Number of rectangles defined by lpRects parameter.
Must be set to 0 if lpRects is NULL.

lpRects Pointer to a D3DRECTS structure that defines one or more
rectangular regions to be cleared. Set to NULL to clear the
entire surface.

flags Flags defining the target of the clear operation:

D3DCLEAR_TARGET Clear the rendering target
to the color in dwColor.

236 Hour 12

,
SY

N
TA

X
,

18 1634xCH12 11/13/99 11:02 AM Page 236

D3DCLEAR_ZBUFFER Clear the depth buffer to
the value in dvZ.

D3DCLEAR_STENCIL Clear the stencil buffer to
the value in dwStencil.

dwColor, dvZ, dwStencil Values to be written to rendering target, according
to value of dwFlags as defined previously.

Because you are not using depth buffering, your only concern is clearing the target sur-
face, as shown in Listing 12.24.

LISTING 12.24 Clearing the Viewport

1: // clear the viewport
2:
3: lpDevice->Clear(0,NULL,D3DCLEAR_TARGET,0,1.0f,0);

Rendering a frame in a 3D engine is similar to the sequence used in your previous appli-
cations: clear the surface, render the scene, and flip the back buffer to the screen.
However, it is necessary to notify Direct3D before rendering primitives to the pipeline,
and to let it know when rendering is complete. This is accomplished with the
IDirect3DDevice7::BeginScene() and IDirect3DDevice7::EndScene() functions, as
shown in Listing 12.25.

LISTING 12.25 Scene Rendering

1: // start the scene render
2:
3: if(SUCCEEDED(lpDevice->BeginScene())) {
4:
5: // loop through the cubes and draw
6:
7: for (int i=0;i<NUM_ROWS;i++)
8: for (int j=0;j<NUM_COLUMNS;j++)
9: if (cubes[i][j])
10: cubes[i][j]->draw(lpDevice);
11:
12: // end the scene
13:
14: lpDevice->EndScene();
15: }
16:
17: // flip to the primary surface
18:
19: lpDDSPrimary->Flip(0,DDFLIP_WAIT);
20: }

Creating Our First Direct3D Application 237

12

,

,

18 1634xCH12 11/13/99 11:02 AM Page 237

The BeginScene() and EndScene() functions must always enclose any DrawPrimitive
calls; otherwise, they will fail to render.

238 Hour 12

Within the scope of the BeginScene() and EndScene() functions, avoid call-
ing 2D functions such as Blt(). Doing so can cause poor performance, as
well as causing the render to fail on some devices.

Handling User Input
To put the scene in motion, the program needs to be able to respond to user input. As
noted in “Putting It in Motion,” keyboard input will be used to set velocity controls for
elevation and rotation around the scene.

Listing 12.26 shows the necessary code to implement the message handler for this appli-
cation, which will set velocity according to input on the cursor keys.

LISTING 12.26 Windows Message Handler

1: LRESULT CALLBACK
2: WindowProc(HWND hWnd, unsigned uMsg, WPARAM wParam, LPARAM lParam)
3: {
4: switch (uMsg)
5: {
6: case WM_DESTROY:
7:
8: Cleanup();
9: PostQuitMessage(0);
10: break;
11:
12: case WM_KEYDOWN:
13:
14: switch (wParam) {
15:
16: case VK_UP:
17:
18: // move up
19:
20: liftVel=200.0f;
21: break;
22:
23: case VK_DOWN:
24:
25: // move down
26:
27: liftVel=-200.0f;

18 1634xCH12 11/13/99 11:02 AM Page 238

28: break;
29:
30: case VK_RIGHT:
31:
32: // rotate to the right
33:
34: rotVel=0.5f;
35: break;
36:
37: case VK_LEFT:
38:
39: // rotate to the left
40:
41: rotVel=-0.5f;
42: break;
43: }
44: break;
45:
46: case WM_KEYUP:
47:
48: switch (wParam) {
49:
50: case VK_UP:
51:
52: // move up
53:
54: liftVel=0.0f;
55: break;
56:
57: case VK_DOWN:
58:
59: // move down
60:
61: liftVel=0.0f;
62: break;
63:
64: case VK_RIGHT:
65:
66: // rotate to the right
67:
68: rotVel=0.0f;
69: break;
70:
71: case VK_LEFT:
72:
73: // rotate to the left
74:
75: rotVel=0.0f;
76: break;
77:
78: case VK_ESCAPE:

Creating Our First Direct3D Application 239

12

continues

18 1634xCH12 11/13/99 11:02 AM Page 239

79:
80: // exit the program on escape
81:
82: DestroyWindow(hWnd);
83: break;
84:
85: }
86: break;
87:
88: default:
89: return DefWindowProc(hWnd, uMsg, wParam, lParam);
90: }
91:
92: return 0L;
93: }

The Finishing Touches
All that remains are the finishing touches: adding a game loop and a cleanup routine. The
game loop resides in the WinMain() function and is unchanged from the routines we
developed in previous 2D applications. The code for WinMain() is shown in Listing
12.27.

LISTING 12.27 The WinMain Function

1: //------ Application Loop ------//
2:
3: int APIENTRY WinMain(HINSTANCE hInstance,
4: HINSTANCE hPrevInstance,
5: LPSTR lpCmdLine,
6: int nCmdShow)
7: {
8: LONGLONG cur_time; // current time
9: LONGLONG perf_cnt; // performance timer frequency
10: BOOL perf_flag=FALSE; // flag determining which timer to use
11: LONGLONG last_time=0; // time of previous frame
12: float time_elapsed; // time since previous frame
13: float time_scale; // scaling factor for time
14:
15: // initialize the application, exit on failure
16:
17: if (!Init(hInstance, nCmdShow)) {
18: Cleanup();
19: return FALSE;
20: }

240 Hour 12

LISTING 12.26 continued

18 1634xCH12 11/13/99 11:02 AM Page 240

21:
22: // is there a performance counter available?
23:
24: if (QueryPerformanceFrequency((LARGE_INTEGER *) &perf_cnt)) {
25:
26: // yes, set timer info and get starting time
27:
28: perf_flag=TRUE;
29: QueryPerformanceCounter((LARGE_INTEGER *) &last_time);
30: time_scale=1.0f/perf_cnt;
31:
32: } else {
33:
34: // no performance counter, read in using timeGetTime
35:
36: last_time=timeGetTime();
37: time_scale=0.001f;
38: }
39:
40: // Now we’re ready to receive and process Windows messages.
41:
42: BOOL bGotMsg;
43: MSG msg;
44: PeekMessage(&msg, NULL, 0U, 0U, PM_NOREMOVE);
45:
46: while(WM_QUIT != msg.message)
47: {
48: bGotMsg = PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE);
49: if(bGotMsg)
50: {
51: TranslateMessage(&msg);
52: DispatchMessage(&msg);
53: } else {
54:
55: // use the appropriate method to get time
56: // and calculate elapsed time since last frame
57:
58: if (perf_flag)
59: QueryPerformanceCounter((LARGE_INTEGER *) &cur_time);
60: else
61: cur_time=timeGetTime();
62:
63: // calculate elapsed time
64:
65: time_elapsed=(cur_time-last_time)*time_scale;
66:
67: // save frame time
68:

Creating Our First Direct3D Application 241

12

continues

18 1634xCH12 11/13/99 11:02 AM Page 241

69: last_time=cur_time;
70:
71: // render the frame
72:
73: render_frame(time_elapsed);
74: }
75: }
76:
77: // return final message
78:
79: return msg.wParam;
80: }

The Cleanup() routine, shown in Listing 12.28, handles de-allocation of interfaces and
object storage. In addition to the DirectDraw interfaces, it also handles deletion of our
mesh objects, as well as releasing the Direct3D object and device interfaces.

LISTING 12.28 Cleaning Up

1: void Cleanup()
2: {
3: // de-allocate block objects
4:
5: for (int i=0;i<NUM_ROWS;i++)
6: for (int j=0;j<NUM_ROWS;j++)
7: SafeDelete(cubes[i][j]);
8:
9: // release 3D interfaces
10:
11: SafeRelease(lpDevice);
12: SafeRelease(lpD3D);
13:
14: // release DirectDraw interfaces
15:
16: SafeRelease(lpDDSBack);
17: SafeRelease(lpDDSPrimary);
18: SafeRelease(lpDD);
19:
20: // display error if one thrown
21:
22: if (ErrStr) {
23: MessageBox(NULL, ErrStr, szCaption, MB_OK);
24: ErrStr=NULL;
25: }
26:
27: }

242 Hour 12

LISTING 12.27 continued

18 1634xCH12 11/13/99 11:02 AM Page 242

Running the Application
The application is now ready for testing. Compile the application and use the arrow keys
to navigate around the scene. The initial view of the scene is shown in Figure 12.8.

Creating Our First Direct3D Application 243

12

Note that the Cleanup() routine releases the 3D interfaces prior to the
DirectDraw interfaces. This is very important because the 3D objects are
dependant on DirectDraw; and after DirectDraw has been released, the 3D
interfaces will be invalid. Also note that the device interface must be
deleted before the Direct3D interface.

FIGURE 12.8
The initial view of the
scene.

As you rotate the scene, you will notice a flaw in the drawing of the blocks, causing
them to overlap as shown in Figure 12.9.

This is because the distance of the objects from your view changes as the scenes rotate,
causing the z-order of them to change. In the next hour, you will learn how to use
z-buffers to prevent overdraw.

18 1634xCH12 11/13/99 11:02 AM Page 243

Summary
In this hour, you have created your first 3D application, which creates a simple 3D scene
and allows the user to navigate around it.

In addition to building on the 3D concepts that you have studied in previous hours, sev-
eral new concepts were learned and applied:

� Some of the various forms in which 3D meshes might be stored.
� How to use indexed storage to minimize the number of vertices required by a

mesh.
� How to render objects with the DrawPrimitive() and DrawIndexedPrimitive()

functions.
� How to clear the viewport.
� How to set up a scene rendering routine.

Q&A
Q What are the limitations of Direct3D? How many vertices are practical in a

scene while still maintaining a smooth frame rate?

A Much depends on the hardware available, and how well the application has been
optimized. In my experience, you can achieve an acceptable frame rate with hard-
ware acceleration while displaying between 2000 and 4000 polygons per frame,
depending on the rendering options used. This does not mean that a scene must be

244 Hour 12

FIGURE 12.9
Object overlap
because of overdraw.

18 1634xCH12 11/13/99 11:02 AM Page 244

limited to this size, though. The scene can be much larger, in some cases over a
hundred thousand vertices, if we take the time to filter the rendering task down to
the objects that need to be displayed.

Q How large can a primitive be?

A In theory, a primitive can contain up to 65,536 vertices. However, for performance
reasons, large primitives should always be broken into smaller groups of vertices
and rendered in groups of 25-40 vertices at a time. This allows the CPU and the
video adapter to be used to their fullest advantage because the video adapter can
process vertices while the CPU prepares the next batch.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. Which mesh type is based on a central vertex to which all other vertices connect?

2. In which vertex format does the coordinates match the pixel coordinates of the
screen?

3. Which mesh type requires the most vertices to create?

4. What is the advantage of indexing a primitive?

5. What is the purpose of applying a specular color to a vertex?

Exercises
1. Increase the number of objects in the scene and see how performance is affected.

2. Create new object classes using the CCube object as a template. Experiment with
simple shapes such as pyramids and cones; then try to create more complex forms.

Creating Our First Direct3D Application 245

12

18 1634xCH12 11/13/99 11:02 AM Page 245

18 1634xCH12 11/13/99 11:02 AM Page 246

HOUR 13
Adding Textures and
Z-Buffers to the Scene

In the previous hour you learned how to set up Direct3D and render a sim-
ple 3D scene. But did you notice one thing when turning the viewpoint in
the previous hour’s sample project? The polygons appear to be sorted the
wrong way. In this hour you’ll learn how to fix that problem using a z-buffer
and add detail by texture mapping your rendered objects.

You already heard about the z-buffer and how it sorts polygons on a per
pixel basis. Well, now is the time to implement the z-buffer so your poly-
gons will be sorted correctly.

You could use other means of sorting. At my daytime job I work with
Playstation programming. It doesn’t have a z-Buffer, so we have to sort
polygons on a triangle basis.

The results can be good but require the artists to make sure that their trian-
gles don’t overlap or lie too close to each other or sorting errors will occur.

19 1634xCH13 11/13/99 10:44 AM Page 247

Fortunately, the PC programmer doesn’t have this problem. Almost every card that boasts
3D in its description has at least a hardware z-buffer, and you can be assured new and
future hardware will include z-buffer functionality.

The z-buffer is a valuable tool but also has its limitations. If you are rendering an other-
wise unsorted scene, the z-buffer will do a pretty good job of properly obscuring distant
objects with nearer objects. When using DirectX immediate mode, there is no implicit
scene management, and you must decide when things are rendered. I’ve found that
sorting objects by distance, then rendering them from far to near gives the best results.
You might think in that case you wouldn’t really need the z-buffer, but it is still valuable
because it assures proper overdraw not only object-to-object, but for polygons within an
object. For example, if you render an airplane and the polygons for the wing hidden by
the fuselage render after the fuselage, without the z-buffer the wing would overdraw, or
cut into, the fuselage.

There are also times when you would want to disable the z-buffer before rendering. The
best example is when rendering something that you want partially transparent; this is
referred to as alpha blending, where alpha designates the level of opacity. A common
pratice is to render, for example, a glowing projectile as a bitmap on a rectangular face
turned toward the camera, which is known as a billboard. DirectX enables you to render
it so that light areas of the map are more opaque and dark areas more transparent. In the
extreme case, a black pixel is completely transparent. If you render that billboard with
the z-buffer on, and then render something behind it, the z-buffer considers the black
pixel closer and disallows rendering the pixel behind it—ugh! Obviously, you must ren-
der in the proper order, z-buffer or not, but I have found that rendering things that
include transparency is usually done with the z-buffer off.

The other issue we will be covering in this hour is texture mapping.

Texture mapping is the process of associating a bitmap with the surface of your
geometry. It enables you to add detail while keeping your geometry simple. This

brings realism to your scene without sacrificing performance.

In this hour you will learn to

• Set up and use the z-buffer

• Load and set up textures

• Display textures on triangles

• Add this knowledge to our sample application

248 Hour 13

NEW TERM

19 1634xCH13 11/13/99 10:44 AM Page 248

Preparing a Z-Buffered Device
If you decide to use a z-buffer in your application, the hard part is setting it up. After you
have selected a z-buffer format, created the z-buffer, and attached it to the back buffer,
you can pretty much forget about it. If you need to enable and disable it for situations
like those mentioned earlier, you can do this with device states; in other words you don’t
detach and reattach it, you simply turn it on and off.

Preparing a z-buffered device is essentially the same as discussed in Hour 12, “Creating
Our First Direct3D Application,” except you must select, create, and attach the z-buffer.
For completeness, we’ll also examine how to enable and disable the z-buffer after it is
attached.

Selecting a Z-Buffer
When you create a z-buffer, you must ask Direct3D for the desired z-buffer mode.
Depending on hardware support and your specific needs, you can create specialized
z-buffers known as stencil buffers or w-buffers, but most applications use simple
z-buffer depth sorting functionality, which is what we’ll cover here and use in our
sample application.

Also dependent on the particular hardware, you can select different z-buffer bit depths.
The larger the bit depth of the z-buffer, the greater the sorting precision. Later, when we
set the near and far clipping planes, we will discuss how the depth of the viewport also
affects the precision of the z-buffer.

Adding Textures and Z-Buffers to the Scene 249

13

The far and near clipping planes simply remove (clip) polygons that get too
far away or too close to the player, thus optimizing 3D performance.

To find the best z-buffer for your application, ask Direct3D to enumerate the available z-
buffer formats. This is similar to other device enumerations and selections you’ve
encountered in DirectX. In this case, you must create the IDirect3D7 interface, and then
ask it to enumerate z-buffer formats as shown in Listing 13.1.

LISTING 13.1 Enumerating Z-Buffer Formats

1: BOOL init_d3d()
2: {
3: // Get Direct3D interface
4: if (FAILED(lpDD->QueryInterface(IID_IDirect3D7,(LPVOID*)&lpD3D))) {

continues

19 1634xCH13 11/13/99 10:44 AM Page 249

5: // Set error string.
6: ErrStr=Err_Query;
7: // Return false
8: return FALSE;
9: }
10: // First try hardware with accelerated transform and lighting.
11: DDPIXELFORMAT m_ddpfZBuffer;
12: ZeroMemory(&m_ddpfZBuffer,sizeof(m_ddpfZBuffer));
13: m_ddpfZBuffer.dwSize=sizeof(m_ddpfZBuffer);
14: m_ddpfZBuffer.dwFlags = DDPF_ZBUFFER;
15: lpD3D->EnumZBufferFormats(IID_IDirect3DTnLHalDevice,

➥EnumZBufferFormatsCallback,(VOID*)&m_ddpfZBuffer);
16: if (zbuf_flag) {
17: zbuf_format=1;
18: }
19: else {
20: lpD3D->EnumZBufferFormats(IID_IDirect3DHALDevice,

➥EnumZBufferFormatsCallback,(VOID*)&m_ddpfZBuffer);
21: if (zbuf_flag) {
22: zbuf_format=2;
23: }
24: else {
25: lpD3D->EnumZBufferFormats(IID_IDirect3DMMXDevice,

➥EnumZBufferFormatsCallback,(VOID*)&m_ddpfZBuffer);
26: if (zbuf_flag) {
27: zbuf_format=3;
28: }
29: else {
30: lpD3D->EnumZBufferFormats(IID_IDirect3DRGBDevice,

➥EnumZBufferFormatsCallback,(VOID*)&m_ddpfZBuffer);
31: if (zbuf_flag) zbuf_format=4;
32: }
33: }
34: }

Note that you must specify which device you want formats for in the call to Direct3D.
This example checks each device type in order of preference, and quits searching when
an acceptable z-buffer format is found and retained. For our example, we’ll accept the
first format that comes along, as shown in Listing 13.2.

LISTING 13.2 Handling Z-Buffer Format Callback

1: // Variables used when looking for z-buffer
2: BOOL zbuf_flag=FALSE;
3: // Used to keep track of which z-buffer device we got.

250 Hour 13

LISTING 13.1 continued

19 1634xCH13 11/13/99 10:44 AM Page 250

4: char zbuf_format=0;
5:
6: // Z-Buffer callback function
7: static HRESULT WINAPI EnumZBufferFormatsCallback(DDPIXELFORMAT* pddpf,

➥VOID* pddpfDesired)
8: {
9: // If parameters == NULL, don’t enumerate more
10: if (NULL==pddpf || NULL==pddpfDesired)
11: return D3DENUMRET_CANCEL;
12:
13: // If the current pixel format’s match the desired ones (DDPF_ZBUFFER
14: // possibly DDPF_STENCILBUFFER), lets copy it and return. This
15: // function is not choosy...it accepts the first valid format that
16: // comes along.
17: if (pddpf->dwFlags==((DDPIXELFORMAT*)pddpfDesired)->dwFlags) {
18: memcpy(pddpfDesired,pddpf,sizeof(DDPIXELFORMAT));
19: // Set flag to TRUE, since we got a valid z-buffer format.
20: zbuf_flag=TRUE;
21: return D3DENUMRET_CANCEL;
22: }
23: return D3DENUMRET_OK;
24: }

As you can see, we accept the first format that matches and pass it back by copying it
into the callback’s context parameter, which we associated with the local pixel format
object when we started the enumeration. After we’ve captured the valid format, we tell
Direct3D to cancel the enumeration.

Creating and Attaching the Z-Buffer
DirectX implements z-buffers as DirectDraw surfaces. As such, you create the z-buffer
using functions you should already be familiar with, except you must set the proper flags
and include the pixel format selected by the enumeration. Because the z-buffer resolves
depth after all transforms are complete—that is, at the back buffer—it must also be the
same size as the back buffer so there is a z-buffer pixel, or location, for each back buffer
pixel. Listing 13.3 picks up where Listing 13.1 left off by using the selected z-buffer
pixel format to create the z-buffer surface.

LISTING 13.3 Create and Attach Z-Buffer

1: // Create the zbuffer
2: DDSURFACEDESC2 ddsd;
3: HRESULT ddrval;
4: ZeroMemory(&ddsd,sizeof(ddsd));
5: ddsd.dwSize = sizeof(ddsd);

Adding Textures and Z-Buffers to the Scene 251

13

continues

19 1634xCH13 11/13/99 10:44 AM Page 251

6: ddsd.dwFlags = DDSD_CAPS|DDSD_WIDTH|DDSD_HEIGHT|DDSD_PIXELFORMAT;
7:
8: // Use counter to check if we should create z-buffer in [sr]

➥video or system memory
9: // Note flag that specifies that this is a z-buffer surface.
10: if (zbuf_format<3)
11: ddsd.ddsCaps.dwCaps = DDSCAPS_ZBUFFER|DDSCAPS_VIDEOMEMORY;
12: else
13: ddsd.ddsCaps.dwCaps = DDSCAPS_ZBUFFER|DDSCAPS_SYSTEMMEMORY;
14:
15: // Set this to size of screen
16: ddsd.dwWidth=640;
17: ddsd.dwHeight=480;
18: ddsd.ddpfPixelFormat.dwSize=sizeof(DDPIXELFORMAT);
19: ddsd.ddpfPixelFormat.dwFlags=DDPF_ZBUFFER;
20: memcpy(&ddsd.ddpfPixelFormat,&m_ddpfZBuffer,sizeof(DDPIXELFORMAT));
21: ddrval = lpDD->CreateSurface(&ddsd, &lpDDSZBuf, NULL);
22: if (ddrval!=DD_OK)
23: {
24: return FALSE; // Could not get z-buffer. Return false
25: } else {
26:
27: // Attach z-buffer to surface
28: lpDDSBack->AddAttachedSurface(lpDDSZBuf);
29: }

As you can see, you attach the z-buffer surface to the back buffer and it’s ready to use.
Device creation and setting up the viewport are the same as before, so I won’t repeat that
part here. However, you should consider the depth of the viewport and its affect on the z-
buffer.

The viewport’s depth is actually set by the projection matrix and is equal to the differ-
ence between the far clipping plane and the near clipping plane, as covered in Hour 11,
“Rendering the 3D Scene.” The z value will always fall between 0 and 1, where a z of 0
is at the near clipping plane and 1 is at the far clipping plane. Distances from the camera
in world space do not transform to z-values in a linear fashion; if you want a linear trans-
form, you’ll want to investigate using a w-buffer (refer to DirectX documentation for
more on w-buffers). However, it should be fairly obvious that a 24-bit z-buffer will have
a finer granularity than a 16-bit z-buffer. What that means is if you use a shallow z-buffer
and a deep viewport, the z-buffer will have trouble resolving between two objects that
are close together. This can be a real problem in, for example, a space game, where you
are simulating vast distances, so you’ll want to carefully think out your scale factors and
look for other tricks to avoid making your z-buffer too coarse-grained.

252 Hour 13

LISTING 13.3 continued

19 1634xCH13 11/13/99 10:44 AM Page 252

Enabling and Disabling the Z-Buffer
When you attach a z-buffer to the device, Direct3D enables the z-buffer by default. So, if
you plan to always have it enabled, you must take no further action. However, if the peo-
ple giving you requirements are even remotely like mine, you will quickly find that leav-
ing this wonderful gadget enabled often produces not so wonderful results. The examples
mentioned above barely scratch the surface.

The Direct3D device enables you to control the z-buffer by changing a device render
state. There are quite a few types of render state that you can change on the device. The
ones you’ll likely use the most are lighting, alpha blending, alpha testing, and z-buffer-
ing. This snippet shows how to change the z-buffer’s enable state:

// Enable z-buffering.
lpDevice->SetRenderState(D3DRENDERSTATE_ZENABLE,D3DZB_TRUE);

// Disable z-buffering.
lpDevice->SetRenderState(D3DRENDERSTATE_ZENABLE,D3DZB_FALSE);

You might want to review the DirectX help documentation of SetRenderState()
because you assert so much control over how your rendered objects will appear with this
function.

Adding Textures
Texture mapping is a fairly simple concept but can be quite involved if you use it for
advanced effects. In the simple case, as demonstrated with our sample application, tex-
ture maps add detail to the surfaces of objects in your scene. DirectX enables you to
associate up to eight textures to the device at one time and mix, blend, or combine them
in a myriad of ways. Let’s consider the basics first, and then touch on a couple examples
of how textures can do more than just add details.

You need at least three things to render a texture mapped object in Direct3D.

• First, you must load the texture into a DirectDraw surface.

• Second, the vertices of the object must include data values, known as uv coordi-
nates, that define how the bitmap is to be associated, or mapped, to the polygons—
hence texture mapping.

• Third, the device must have the proper render, texture, and texture stage states set.
When these things are set, you can render the geometry using the appropriate ren-
dering function.

Before delving into our example of basic texture mapping, let’s consider some of the
other things you can do with textures. The Direct3D device enables you to layer textures

Adding Textures and Z-Buffers to the Scene 253

13

19 1634xCH13 11/13/99 10:44 AM Page 253

in stages. A common example is called an illumination map; in this case, you attach a
map to stage 0 that expresses diffuse details and a map to stage 1 that is mostly black but
has colored areas that you want visible whether the object is lit or not. You can use an
add function when you render so the parts of the stage 1 map that are black (color value
of 0) have no effect, but areas with color content are added into the diffuse color when
rendered, which simulates localized illumination.

Bump mapping, which gives the impression of dimensionality to mapped details, is done
much the same way. You can also use map combinations and modulate (rather than add)
to designate areas of transparency, or emboss one image with another. This is a vast sub-
ject well beyond the scope of this book, but you’ll probably want to look into this more
as a means to create advanced effects. Beware, however, that although Direct3D supports
up to eight texture stages, most current hardware can handle only two stages at once, so
you’ll probably want to limit your ambitions, at least for now.

Let’s get back to basics: load a texture, prepare geometry, set up the device, and render!

Load a Texture
The texture itself is simply a DirectDraw surface, so loading it is not much different from
loading bitmaps for 2D blitting. However, texture dimensions must always be a power of
2 to work properly, and you must flag the surface as a texture when it is created.

Textures can be stored as a file or as a resource within your project. You’ll almost cer-
tainly want to store bitmaps as resources for any release product, but for simple efforts,
you may leave them unpackaged. For now, we’ll use a CreateTexture function that
takes a Direct3D device and a string as parameters. The string is the name of the bitmap;
the function shown in Listing 13.4 tries to load it from a resource and, if that fails, tries
to load it from a file.

LISTING 13.4 Getting the Texture’s Bitmap

1: LPDIRECTDRAWSURFACE7 CreateTexture(LPDIRECT3DDEVICE7 pd3dDevice,
2: CHAR* strName)
3: {
4: // Create a bitmap and load the texture file into it. Check the
5: // executable’s resource first.
6: HBITMAP hbm = (HBITMAP)LoadImage(GetModuleHandle(NULL), strName,
7: IMAGE_BITMAP, 0, 0, LR_CREATEDIBSECTION);
8: if(NULL == hbm)
9: {
10: // If not in the resource, try to load the bitmap as a file.
11: // Real code would try to find the bitmap among many file paths.
12: hbm = (HBITMAP)LoadImage(NULL, strName, IMAGE_BITMAP, 0, 0,

254 Hour 13

19 1634xCH13 11/13/99 10:44 AM Page 254

13: LR_LOADFROMFILE|LR_CREATEDIBSECTION);
14: if(NULL == hbm)
15: return NULL;
16: }
17:
18: // The actual work of creating the texture is done

➥in this next function.
19: return CreateTextureFromBitmap(pd3dDevice, hbm);
20: }

As you probably noticed, CreateTexture calls a function called
CreateTextureFromBitmap. This function, shown in Listing 13.5, creates a texture the
same way you would create a normal DirectDraw surface, except it takes into considera-
tion texture size limitations and texture-specific flags.

LISTING 13.5 Loading the Bitmap Into the Texture Surface

1: static LPDIRECTDRAWSURFACE7 CreateTextureFromBitmap(LPDIRECT3DDEVICE7
➥pd3dDevice,
➥HBITMAP hbm)

2: {
3: LPDIRECTDRAWSURFACE7 pddsTexture;
4: HRESULT hr;
5:
6: // Get the device caps so we can check if the device has any
7: // constraints when using textures (Voodoo cards for example,

➥have a limit of 256x256 texture size)
8: D3DDEVICEDESC7 ddDesc;
9: if(FAILED(pd3dDevice->GetCaps(&ddDesc)))
10: return NULL;
11:
12: // Get the bitmap structure (to extract width, height, and bpp)
13: BITMAP bm;
14: GetObject(hbm, sizeof(BITMAP), &bm);
15: DWORD dwWidth = (DWORD)bm.bmWidth;
16: DWORD dwHeight = (DWORD)bm.bmHeight;
17:
18: // Setup the new surface desc for the texture.

➥Note how we are using the texture manage
19: // attribute so Direct3D does alot of dirty work for us
20: DDSURFACEDESC2 ddsd;
21: ZeroMemory(&ddsd, sizeof(DDSURFACEDESC2));
22: ddsd.dwSize = sizeof(DDSURFACEDESC2);
23: ddsd.dwFlags = DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|
24: DDSD_PIXELFORMAT|DDSD_TEXTURESTAGE;
25: ddsd.ddsCaps.dwCaps = DDSCAPS_TEXTURE;
26: ddsd.dwWidth = dwWidth;

Adding Textures and Z-Buffers to the Scene 255

13

continues

19 1634xCH13 11/13/99 10:44 AM Page 255

27: ddsd.dwHeight = dwHeight;
28:
29: // Turn on texture management for hardware devices
30: if(ddDesc.deviceGUID == IID_IDirect3DHALDevice)
31: ddsd.ddsCaps.dwCaps2 = DDSCAPS2_TEXTUREMANAGE;
32: else if(ddDesc.deviceGUID == IID_IDirect3DTnLHalDevice)
33: ddsd.ddsCaps.dwCaps2 = DDSCAPS2_TEXTUREMANAGE;
34: else
35: ddsd.ddsCaps.dwCaps |= DDSCAPS_SYSTEMMEMORY;
36:
37: // Adjust width and height, if the driver requires it
38: if(ddDesc.dpcTriCaps.dwTextureCaps & D3DPTEXTURECAPS_POW2)
39: {
40: for(ddsd.dwWidth=1; dwWidth>ddsd.dwWidth; ddsd.dwWidth<<=1);
41: for(ddsd.dwHeight=1; dwHeight>ddsd.dwHeight; ddsd.dwHeight<<=1);
42: }
43: if(ddDesc.dpcTriCaps.dwTextureCaps & D3DPTEXTURECAPS_SQUAREONLY)
44: {
45: if(ddsd.dwWidth > ddsd.dwHeight) ddsd.dwHeight = ddsd.dwWidth;
46: else ddsd.dwWidth = ddsd.dwHeight;
47: }
48:
49: // Enumerate the texture formats and find the closest device-supported
50: // texture pixel format. The TextureSearchCallback function for this
51: // tutorial is simply looking for a 16-bit texture. Real apps may be
52: // interested in other formats, for alpha textures, bumpmaps, etc..
53: pd3dDevice->EnumTextureFormats(TextureSearchCallback,

➥&ddsd.ddpfPixelFormat);
54: if(0L == ddsd.ddpfPixelFormat.dwRGBBitCount)
55: return NULL;
56:
57: // Get the device’s render target, so we can then use the render
58: // target to get a ptr to a DDraw object. We need the DirectDraw
59: // interface for creating surfaces.
60: LPDIRECTDRAWSURFACE7 pddsRender;
61: LPDIRECTDRAW7 pDD;
62: pd3dDevice->GetRenderTarget(&pddsRender);
63: pddsRender->GetDDInterface((VOID**)&pDD);
64: pddsRender->Release();
65:
66: // Create a new surface for the texture
67: if(FAILED(hr = pDD->CreateSurface(&ddsd, &pddsTexture, NULL)))
68: {
69: pDD->Release();
70: return NULL;
71: }
72:
73: // Done with DDraw

256 Hour 13

LISTING 13.5 continued

19 1634xCH13 11/13/99 10:44 AM Page 256

74: pDD->Release();
75:
76: // Now, copy the bitmap to the texture surface. To do this, we are
77: //creating a DC for the bitmap and a DC for the surface, so we can
78: // use the BitBlt() call to copy the actual bits.
79:
80: // Get a DC for the bitmap
81: HDC hdcBitmap = CreateCompatibleDC(NULL);
82: if(NULL == hdcBitmap)
83: {
84: pddsTexture->Release();
85: return NULL;
86: }
87: SelectObject(hdcBitmap, hbm);
88:
89: // Get a DC for the surface
90: HDC hdcTexture;
91: if(SUCCEEDED(pddsTexture->GetDC(&hdcTexture)))
92: {
93: // Copy the bitmap image to the surface.
94: BitBlt(hdcTexture, 0, 0, bm.bmWidth, bm.bmHeight, hdcBitmap,
95: 0, 0, SRCCOPY);
96: pddsTexture->ReleaseDC(hdcTexture);
97: }
98: DeleteDC(hdcBitmap);
99:
100: // Return the newly created texture
101: return pddsTexture;
102: }

Texture dimensions must be a power of two or they will not render and, for all practical
purposes, textures should not exceed 256 pixels in width or height. If you look carefully
at line 43 of this listing, you’ll notice that some hardware also requires textures to be
square. DirectX does not force you to use textures with power of two dimensions, but
I’ve never seen it render an odd-sized texture.

Note that we set the surface capabilities as DDSCAPS_TEXTURE, which tells DirectDraw
we’ll be using this surface for texture mapping operations. Also note we use the
DDSD_TEXTURESTAGE flag; because we cleared the surface description object before filling
it, the texture’s stage will be zero. If you load, for example, an illumination map, you
would want to set the dwTextureStage field to 1 so that DirectX knows you’ll be using
the texture on stage one.

Also note the DDSCAPS2_TEXTUREMANAGE capability. Most hardware will require the tex-
ture to reside in video memory when being rendered. A large 3D scene will likely use
many textures whose combined footprint exceeds the video memory capacity. When you

Adding Textures and Z-Buffers to the Scene 257

13

19 1634xCH13 11/13/99 10:44 AM Page 257

use the DirectX texture management capability, you let DirectX decide where the texture
resides—in system or video memory. DirectX will store the image in system memory
and swap it to video when you associate it with the device for rendering. You might want
to consider implementing your own texture management, but I recommend being
thoughtful about the order in which you render things and letting DirectX handle the
details of getting the textures where they need to be.

Notice how we use the standard BitBlt function to draw the bitmap to a device context
we get from the DirectDraw surface. Remember, all functions that work on a device con-
text will work on a DirectDraw surface, even TrueType font drawing.

This function also asks the device to EnumTextureFormats, which calls the
TextureSearchCallback shown in Listing 13.6. For our sample application, we simply
look for the first 16-bit format that comes along, and we skip advanced formats such as
bump maps, luminance maps, and so on. You’ll usually use 16-bit formats but might
sometimes use other formats. For example, if you stretch a texture over a large area, a
32-bit format will greatly reduce color banding because, like the z-buffer, the colors are
finer grained.

LISTING 13.6 Selecting a Texture Format

1: static HRESULT CALLBACK TextureSearchCallback(DDPIXELFORMAT* pddpf,
2: VOID* param)
3: {
4: // Note: Return with DDENUMRET_OK to continue enumerating more formats.
5:
6: // Skip advanced modes
7: if(pddpf->dwFlags & (DDPF_LUMINANCE|DDPF_BUMPLUMINANCE|DDPF_BUMPDUDV))
8: return DDENUMRET_OK;
9:
10: // Skip any FourCC formats
11: if(pddpf->dwFourCC != 0)
12: return DDENUMRET_OK;
13:
14: // Skip alpha modes
15: if(pddpf->dwFlags&DDPF_ALPHAPIXELS)
16: return DDENUMRET_OK;
17:
18: // We only want 16-bit formats, so skip all others
19: if(pddpf->dwRGBBitCount != 16)
20: return DDENUMRET_OK;
21:
22: // We found a good match. Copy the current pixel format to our output
23: // parameter
24: memcpy((DDPIXELFORMAT*)param, pddpf, sizeof(DDPIXELFORMAT));
25:

258 Hour 13

19 1634xCH13 11/13/99 10:44 AM Page 258

26: // Return with DDENUMRET_CANCEL to end enumeration.
27: return DDENUMRET_CANCEL;
28: }

Prepare Geometry
Recall from “The Syntax for a D3DLVERTEX Structure” in Hour 12 that each vertex can
also include texture mapping values, which are commonly referred to as uv coordinates.

Take a look at Figure 13.1. In effect, the u identifies the relative location within the x or
horizontal dimension of bitmap, and the v identifies the relative location within the y or
vertical dimension of the bitmap. It is relative because uv values will always be inter-
preted (truncated) to fall between 0 and 1. In other words, if you set a u to 1.5, it is the
same as 0.5. Hence, a u of 0.5 would associate the vertex containing the value to the
middle of the associated texture in the bitmap’s x (horizontal) dimension. If the map is
256 pixels wide, a u of 0.5 is pixel 128; if the map is only 128 pixels wide, the same u
would indicate pixel 64.

Adding Textures and Z-Buffers to the Scene 259

13

FIGURE 13.1
Mapping a 2D image
to a 3D object.

If you were hanging a picture on a wall, you would not want the picture to repeat. A
simple arrangement is a rectangle with a u from 0 to 1 as you go left to right, and a v of
0 to 1 as you go top to bottom. However, if you must cover a large area, you’ll want to
tile the texture by using uv values larger than 1. Because the uv values wrap, the texture
simply repeats, or tiles (at least with normal settings—you can use render states to
change how the device manages out-of-range uv values). Tiling is useful, but your map’s
left edge must match the right edge, and the top edge must match the bottom or you’ll
have another one of those “ugh” situations.

19 1634xCH13 11/13/99 10:44 AM Page 259

We’ll build on Hour 12’s project by adding uv values to the existing cube vertices. We’re
already using a standard vertex format that includes fields for u and v values, so we’ll
just give them values that will map a building texture on them, as shown in Listing 13.7.

LISTING 13.7 Revised Cube Constructor Function

1: CCube::CCube(D3DVECTOR origin,D3DVECTOR size,float R,float G,float B)
2: {
3: // allocate the vertex array
4:
5: verts=new D3DLVERTEX[8];
6:
7: // calculate far corner of the cube
8:
9: D3DVECTOR extent=origin+size;
10:
11: // calculate highlight, midtone, and shadow colors
12:
13: D3DCOLOR clr[8];
14: float luma[8]={0.7f,1.0f,0.5f,0.8f,0.15f,0.45f,0.35f,0.65f};
15: for (int i=0;i<8;i++)
16: clr[i]=D3DRGB(R*luma[i],G*luma[i],B*luma[i]);
17:
18: // Set up the 8 corners of the cube...
19: verts[0]=D3DLVERTEX(D3DVECTOR(origin.x,origin.y,origin.z),clr[0],0,
20: // ...this time setting UV coords as well
21: 0.0f,0.0f);
22: verts[1]=D3DLVERTEX(D3DVECTOR(origin.x,extent.y,origin.z),clr[1],0,
23: 0.0f,2.0f);
24: verts[2]=D3DLVERTEX(D3DVECTOR(extent.x,origin.y,origin.z),clr[2],0,
25: 1.0f,0.0f);
26: verts[3]=D3DLVERTEX(D3DVECTOR(extent.x,extent.y,origin.z),clr[3],0,
27: 1.0f,2.0f);
28: verts[4]=D3DLVERTEX(D3DVECTOR(extent.x,origin.y,extent.z),clr[4],0,
29: 2.0f,0.0f);
30: verts[5]=D3DLVERTEX(D3DVECTOR(extent.x,extent.y,extent.z),clr[5],0,
31: 2.0f,2.0f);
32: verts[6]=D3DLVERTEX(D3DVECTOR(origin.x,origin.y,extent.z),clr[6],0,
33: 1.0f,0.0f);
34: verts[7]=D3DLVERTEX(D3DVECTOR(origin.x,extent.y,extent.z),clr[7],0,
35: 1.0f,2.0f);
36: }

Set Up the Device and Render
The example largely separates device setup and rendering because it is so simple that we
can set the device up and render to our heart’s content. The larger and more complex

260 Hour 13

19 1634xCH13 11/13/99 10:44 AM Page 260

your scenes become, and the more special effects you set out to implement, the more
you’ll need to consolidate device setup and rendering. In other words, the render function
for a particular object will want to ensure that at least the lighting, z-buffer, and alpha
settings are where they need to be for this object (or part of an object!).

DirectX7 includes a new feature, called state blocks, that re-enforces the concept that
device settings will vary from object to object during the rendering of a given scene. A
state block is like a macro; you record the device state settings into the state block, and
then you can set the device in one swoop rather than make several SetRenderState()
calls. What I do is just build the object using the appropriate setup calls, and then record
and switch to the state block during optimization. Look in Direct3D Immediate Mode
Essentials in the DirectX help for more on state blocks.

For now, let’s set our scene’s render states when we set the projection matrix. Each call
to the device in Listing 13.8 is worthy of mention. First, remember that the depth of the
viewport is defined by the projection matrix; in this case we’re setting the near plane to
10.0f and the far plane to 2000.0f.

LISTING 13.8 Projection Matrix and Render States

1: // Projection matrix.
2: D3DMATRIX proj_m;
3:
4: // Set projection matrix.
5: D3DUtil_SetProjectionMatrix(proj_m, 0.8f, 1.333f, 10.0f, 2000.0f);
6: lpDevice->SetTransform(D3DTRANSFORMSTATE_PROJECTION,&proj_m);
7: // Disable Direct3D lighting, since we will provide our own
8: lpDevice->SetRenderState(D3DRENDERSTATE_LIGHTING,FALSE);
9:
10: // Set linear (nice) filtering.
11: lpDevice->SetTextureStageState(0,D3DTSS_MAGFILTER,D3DTFG_LINEAR);
12:
13: // Enable z-buffering.
14: lpDevice->SetRenderState(D3DRENDERSTATE_ZENABLE,D3DZB_TRUE);
15: // return success to caller

After the projection matrix is set, turn lighting off because in this case we’re stating light
as a diffuse color in the vertices. This is the color variable calculated in Listing 13.7 and
included in the vertex data. I suspect the render function you write for each object will
ensure the lights are on or off to suit their needs. By the way, the order in which you do
these setup calls is a matter of preference; I can’t think of any cases where it really mat-
ters, as long as they’re all set before you DrawPrimitive(). If your job or application
involves rendering with Direct3D, I recommend you carefully study the DirectX Help
Essentials and Reference regarding SetRenderState().

Adding Textures and Z-Buffers to the Scene 261

13

19 1634xCH13 11/13/99 10:44 AM Page 261

The next call in Listing 13.8, SetTextureStageState(), is another function worthy of
deeper studies. Remember Direct3D enables you to layer textures in stages and render
them at one time if, of course, the hardware supports it. Each stage has several types of
state that you set essentially like setting the device itself. By setting texture stage states,
you control how color will be blended when rendered. In this case, we’re asking for
some filtering during the mapping so that the rendered image doesn’t look blocky or
pixellated.

Don’t be lulled into thinking texture stages involve only textures. In reality, it is the focal
point of controlling color blending. I simply don’t have the time to elaborate on this fully
here, so I’ll whet your appetite with another example. Consider a space ship with one of
those shield gizmos that just got hit by a weapon. Say you want the visual to change
color to indicate shield strength, as a feedback to the player, and that it plays a little
bitmap animation over time. In Direct3D, you could do this by using a grayscale map (or
sequence), and then feeding the diffuse color into the vertices. Listing 13.9 shows a par-
tial setup.

LISTING 13.9 Modulation Example

1: lpDevice->SetRenderState(D3DRENDERSTATE_SPECULARENABLE,FALSE);
2: lpDevice->SetRenderState(D3DRENDERSTATE_LIGHTING,FALSE);
3:
4: lpDevice->SetRenderState(D3DRENDERSTATE_ALPHABLENDENABLE,TRUE);
5: lpDevice->SetRenderState(D3DRENDERSTATE_SRCBLEND,D3DBLEND_SRCCOLOR);
6: lpDevice->SetRenderState(D3DRENDERSTATE_DESTBLEND,D3DBLEND_INVSRCCOLOR);
7:
8: lpDevice->SetTexture(0,pShieldTex);
9: lpDevice->SetTextureStageState(0,D3DTSS_COLORARG1,D3DTA_TEXTURE);
10: lpDevice->SetTextureStageState(0,D3DTSS_COLORARG2,D3DTA_DIFFUSE);
11: lpDevice->SetTextureStageState(0,D3DTSS_COLOROP,D3DTOP_MODULATE);

Note I’ve turned speculars and lighting off (shields are self-illuminated). Because the
shield map will be mostly black and we want that transparent, we’ll turn on alpha blend-
ing then set the source and destination blend factors for the alpha operation. Note these
are device states. For the texture, we associate the shield map with the device, set the
color arguments to ensure they are where we need them, and then set the color operation
for texture stage 0 to modulate. Modulate is a multiply operation, so the dark areas of the
map stay dark and the light areas of the map multiply the diffuse color; in other words,
the map sets intensity and opacity and the diffuse color contained in the vertices sets the
color.

262 Hour 13

19 1634xCH13 11/13/99 10:44 AM Page 262

Let’s get back to Earth here and look at an example we can fit in a 24-hour course. The
example renders pretty much the same as in Hour 12, so Listing 13.10 shows only the
context of the changes. Remember we attached a z-buffer, so we want to be sure and tell
the device to clear it (the z-buffer) when we Clear() the device. The only other change
here is setting the texture to the device’s texture stage 0.

LISTING 13.10 Render the Geometry

1: D3DMATRIX view_matrix;
2: D3DUtil_SetViewMatrix(view_matrix,
3: view_loc,
4: D3DVECTOR(0.0f,0.0f,0.0f),
5: D3DVECTOR(0.0f,1.0f,0.0f));
6: lpDevice->SetTransform(D3DTRANSFORMSTATE_VIEW,&view_matrix);
7:
8: // Clear the viewport. This time remembering to clear the z-buffer also
9: lpDevice->Clear(0,NULL,D3DCLEAR_ZBUFFER|D3DCLEAR_TARGET,0,1.0f,0);
10:
11: // Set texture as active
12: lpDevice->SetTexture(0, lpTexture);
13:
14: // Start the scene render
15: if(SUCCEEDED(lpDevice->BeginScene())) {
16: // Loop through the cubes and draw
17: for (int i=0;i<NUM_ROWS;i++)
18: for (int j=0;j<NUM_COLUMNS;j++)
19: if (cubes[i][j]) cubes[i][j]->draw(lpDevice);
20:
21: // end the scene
22: lpDevice->EndScene();
23: }

Summary
In this hour you learned how to set up and use a z-buffer, when and when not to use a z-
buffer, and how to texture map your scene for added detail and realism. You also applied
this knowledge to a sample application, building on your knowledge from previous
hours.

Q&A
Q Assigning texture uv coordinates is complicated. Is there a better way?

A Yes. Later in this book, you’ll learn how to import models created with 3D graph-
ics packages, which include uv data.

Adding Textures and Z-Buffers to the Scene 263

13

19 1634xCH13 11/13/99 10:44 AM Page 263

Q Because we weren’t using the uv coordinates in Hour 12, wasn’t it wasteful to
include them in the vertex structure and pass them to the device?

A Because Direct3D lets you specify the structure of the vertex data you are render-
ing, you will probably define and use your own structures more often than not. And
yes, passing uv’s you aren’t using is a waste and will decrease performance.

Q Must the uv mapping for each stage of a multitexture render be the same?

A No. You can include up to eight sets of uv coordinates in the vertex, and then select
which set a given stage is using via the SetTextureStageState() function.

Workshop
The workshop will enable you to test yourself on what you have learned in this hour and
get you thinking about how to apply this knowledge in a real life application. The
answers to the quiz are in Appendix A, “Answers.”

Quiz
1. What is the purpose of the z-buffer?

2. When would you want to use a larger bit depth z-buffer?

3. How do you define the domain of the z-buffer?

4. Are there occasions when you would want to disable the z-buffer?

5. If so, how do you control whether the z-buffer is enabled?

6. What are uv coordinates?

7. Identify the minimum preparation required in Direct3D to render a texture mapped
object.

Exercise
Using the sample project, experiment with different maps and different device and tex-
ture stage state settings and observe how it affects the rendered buildings.

264 Hour 13

19 1634xCH13 11/13/99 10:44 AM Page 264

HOUR 14
Adding Realism Through
Lighting

To bring depth and realism to your 3D application, you can use Direct3D
lighting. In this hour, you will learn the following:

• How to create lights in Direct3D.

• What the three different types of lights in Direct3D are.

• How to activate the Direct3D lighting pipeline.

• How to animate lights in your scene.

Creating a Light
Traditionally, Direct3D programmers have been wary of using the Direct3D
lighting pipeline because it is very slow in some cases. However, several
video cards now support the Direct3D lighting pipeline in hardware, which
means Direct3D lighting will be very fast! In addition, using the Direct3D
lighting pipeline is an easy way to add realism to your application with min-
imal effort. Finally, even if the Direct3D pipeline isn’t supported directly by
the hardware, the software pipeline is adequate for many applications.

20 1634xCH14 11/13/99 11:03 AM Page 265

Creating a new light is easy. All you have to do is call the
IDirect3Ddevice7::SetLight() method, telling the function which light you are creat-
ing, and passing the function a structure filled with information about the light you want
to create.

The Syntax for IDirect3Ddevice7::SetLight ()
HRESULTS SetLight(

DWORD dwIndex,
LPD3DLIGHT7 lpD3DLight7

);

The SetLight() function creates a new light according to the LPD3DLIGHT7 structure. On
success, this function returns D3D_OK.

Parameters:

dwIndex The zero-based index of the light. If a light already exists
at the specified index, it is replaced.

lpD3DLight7 A structure filled with the properties of the light that
should be created.

The hardest part about creating a new light is filling in the LPD3DLIGHT7 structure. To
understand all the fields of this structure, you must first understand the different types of
lights that Direct3D implements.

Types of Light
Direct3D implements three different kinds of lights: point lights, spotlights, and parallel,
or directional, lights. All three types of lights share certain properties, and some proper-
ties are specific to certain types of lights.

A property that every light shares is light color. Direct3D breaks the color of each light
into three separate components: diffuse, specular, and ambient. These three components
approximate lighting that occurs in the real world. In the real world, light travels from a
source and is reflected and absorbed by objects that it touches. To describe the general
level of light in a scene, you can set the ambient color of a light. Ambient light is light
that has been reflected so many times that it is impossible to tell which direction it is
coming from. Diffuse light is light that comes from a certain direction, and thus diffuse
light is brightest when it hits a surface straight on. Specular light can be thought of as the
light that makes an object shiny.

Light color, as well as the rest of the light properties, are specified in the D3DLIGHT7
structure as follows:

266 Hour 14

,
SY

N
TA

X

,

20 1634xCH14 11/13/99 11:03 AM Page 266

The Syntax for the D3DLIGHT7 Structure
typedef struct _D3DLIGHT7 {

D3DLIGHTTYPE dltType;
D3DCOLORVALUE dcvDiffuse;
D3DCOLORVALUE dcvSpecular;
D3DCOLORVALUE dcvAmbient;
D3DVECTOR dvPosition;
D3DVECTOR dvDirection;
D3DVALUE dvRange;
D3DVALUE dvFalloff;
D3DVALUE dvAttenuation0;
D3DVALUE dvAttenuation1;
D3DVALUE dvAttenuation2;
D3DVALUE dvTheta;
D3DVALUE dvPhi;

} D3DLIGHT7, *LPD3DLIGHT7;

The type element specifies the type of light (point, spot, or directional). The diffuse,
specular, and ambient elements specify the color of the light. The rest of the elements
depend on the type of light being created, and they will be discussed in the next sections.

Point Lights
A point light is a light that is similar to a light bulb. A point light radiates light outward
from a certain point in all directions. For an illustrated example of a point light, see
Figure 14.1.

Adding Realism Through Lighting 267

14

,
SY

N
TA

X

,

FIGURE 14.1
A diagram of a point
light.

20 1634xCH14 11/13/99 11:03 AM Page 267

Point lights have definite position, and thus they must define the position element, but
because a point light emits light in every direction, it is not necessary to specify the
direction element. The range element specifies the maximum range over which the light
can have an effect, and the attenuation elements specify how the intensity of the light
changes with distance. Specifically, the dvAttenuation0 element specifies the constant
attenuation, the dvAttenuation1 element specifies the linear attenuation, and the
dvAttenuation2 element specifies the quadratic attenuation. The rest of the elements
aren’t used with point lights, so you don’t need to specify them.

Spotlights
You can think of a spotlight as a flashlight. A spotlight emits rays of light in the shape of
a cone. For an illustrated example of a spotlight, see Figure 14.2.

268 Hour 14

FIGURE 14.2
A diagram of a
spotlight.

Inner Cone

Outer Cone

Spotlights also have definite position, so you must specify the position element. In addi-
tion, you must also specify the direction element to tell Direct3D where the light is
pointing. The range element tells Direct3D the maximum range of the spotlight, and the
attenuation elements specify how the intensity of the spotlight will change over distance.
Spotlights also have a few other unique properties. First, the falloff element is used to
describe the light intensity change from the bright inner cone of the spotlight to the
edges of the spotlight. You must specify the size of the angle of the inner cone of the
spotlight by setting the theta element to an angle (in radians). Likewise, you must specify
the size of the angle of the outer cone of the spotlight by setting the phi element.

The theta element must be between 0 and the value of the phi element.
The phi element must be between 0 and pi.

20 1634xCH14 11/13/99 11:03 AM Page 268

Directional Lights
A directional light is a light that is so far away that all its rays hit the scene parallel. The
sun is a good example of a parallel light because it is so far away from earth that nearly
all the rays that reach earth from the sun are parallel. For an illustrated example of a par-
allel light, see Figure 14.3.

Adding Realism Through Lighting 269

14

FIGURE 14.3
A diagram of a direc-
tional light.

You can think of a directional light as a point light sitting at a point an infinite distance
away from the scene. Because a directional light sits at a point an infinite distance away,
it is not necessary to specify the position element when you create a directional light.
However, you must specify the direction element. None of the other elements in the
D3DLIGHT7 structure affect a directional light, so you don’t need to bother setting them
when you are creating a directional light.

Adding Lighting to Our Project
Each object in your scene can also have diffuse, specular, and ambient color components.
For objects, these values are called materials because they describe how a surface reflects
incoming light. You can make a material shiny by increasing the specular component of
its material, or you can make it brighter by increasing the diffuse component of its mate-
rial.

The CCube object used in the sample application now has a new public data member—a
D3DMATERIAL7 structure. In addition, the CCube object now has three new functions to set
each material component. Listing 14.1 shows the three new functions.

LISTING 14.1 The New CCube Functions That Handle Materials

1: void CCube::SetMaterialDiffuse(float diffuseR, float diffuseG,
➥float diffuseB,

2: float diffuseA)
3: {
4: // Set the RGBA for diffuse reflection

continues

20 1634xCH14 11/13/99 11:03 AM Page 269

5: material.dcvDiffuse.r = (D3DVALUE) diffuseR;
6: material.dcvDiffuse.g = (D3DVALUE) diffuseG;
7: material.dcvDiffuse.b = (D3DVALUE) diffuseB;
8: material.dcvDiffuse.a = (D3DVALUE) diffuseA;
9: }
10:
11: void CCube::SetMaterialAmbient(float ambientR, float ambientG,

➥float ambientB,
12: float ambientA)
13: {
14: // Set the RGBA for ambient reflection.
15: material.dcvAmbient.r = (D3DVALUE) ambientR;
16: material.dcvAmbient.g = (D3DVALUE) ambientB;
17: material.dcvAmbient.b = (D3DVALUE) ambientG;
18: material.dcvAmbient.a = (D3DVALUE) ambientA;
19:
20: }
21:
22: void CCube::SetMaterialSpecular(float specularR, float specularG,

➥float specularB,
23: float specularA, float specularPower)
24: {
25: // Set the RGBA and the sharpness of the specular highlight
26: material.dcvSpecular.r = (D3DVALUE) specularR;
27: material.dcvSpecular.g = (D3DVALUE) specularG;
28: material.dcvSpecular.b = (D3DVALUE) specularB;
29: material.dcvSpecular.a = (D3DVALUE) specularA;
30: material.dvPower = (float) specularPower;
31: }

When you are ready to render your new object, you must tell Direct3D the material of
the object. You can call the IDirect3Ddevice7::SetMaterial() function to set the
material that Direct3D should use. In the sample application, you simply set the material
before each cube is drawn. Listing 14.2 shows the new CCube::draw() function.

LISTING 14.2 The New CCube::draw() Function

1: void CCube::draw(LPDIRECT3DDEVICE7 device)
2: {
3: // Set RenderState to reflect the cube’s material
4: device->SetMaterial(&material);
5:

270 Hour 14

LISTING 14.1 continued

20 1634xCH14 11/13/99 11:03 AM Page 270

6: // Draw
7: device->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, D3DFVF_VERTEX,
8: verts, CUBE_VERTEX_COUNT,
9: cube_index, CUBE_INDEX_COUNT,
10: 0);
11: };

Generally, the color values that you specify for materials and lights in your scene should
have values between 0.0 and 1.0. However, there are special cases when you might spec-
ify a value out of this range. For example, you could define a light with negative color
values to pull light away from the scene. Or, you might want an extremely bright light,
and thus enter values higher than 1.0. It all depends on the situation. You should experi-
ment with many different color values to get the best results.

Direct3D combines the material value of an object with the incoming light values to
determine the color of the pixel it should place on the screen. As mentioned before, the
diffuse and specular components depend on the direction an object is facing. How does
Direct3D know which direction our object is facing? We have to tell Direct3D which
direction our object is facing by providing a vertex normal (a vector pointing in the
appropriate direction) for each vertex in our scene. During lighting calculations, the
angles between the vertex normals, the direction of the light, and the direction from the
vertices to the viewer are used to determine how light will affect the color of each vertex.
Determining a vertex normal isn’t always clear for complex geometric objects, however
it is easier to determine vertex normals for simple geometric objects. For example, the
vertex normals on a box should point away from the face of the box we are rendering,
and the vertex normals of a sphere should point away from the center of the sphere. For
more information about vertex normals and the mathematics behind Direct3D lighting,
you should consult the Direct3D SDK documentation. Figure 14.4 is an illustrated exam-
ple of vertex normals.

Adding vertex normals to the application is easy. Each building can be thought of as a
box, and the vertex normals for a box should point away from the face of the box that is
being rendered. Because a box has six faces, you must define six different vertex nor-
mals. When you then create your vertices, you pass the appropriate vertex normal to the
D3DVERTEX constructor. Listing 14.3 shows how the sample application creates vertex
normals for the CCube() object.

Adding Realism Through Lighting 271

14

20 1634xCH14 11/13/99 11:03 AM Page 271

LISTING 14.3 The New CCube() Constructor

1: CCube::CCube(D3DVECTOR origin,D3DVECTOR size,float R,float G,float B)
2: {
3: // Zero out the material information
4: ZeroMemory(&material, sizeof(material));
5:
6: // allocate the vertex array
7: verts=new D3DVERTEX[CUBE_VERTEX_COUNT];
8:
9: // calculate far corner of the cube
10: D3DVECTOR extent=origin+size;
11:
12: // Original 3d points
13: D3DVECTOR vec0(origin.x,origin.y,origin.z);
14: D3DVECTOR vec1(origin.x,extent.y,origin.z);
15: D3DVECTOR vec2(extent.x,origin.y,origin.z);
16: D3DVECTOR vec3(extent.x,extent.y,origin.z);
17: D3DVECTOR vec4(extent.x,origin.y,extent.z);
18: D3DVECTOR vec5(extent.x,extent.y,extent.z);
19: D3DVECTOR vec6(origin.x,origin.y,extent.z);

272 Hour 14

FIGURE 14.4
Some diagrams of
vertex normals.

Vertex Normals for a Circle

Vertex Normals for a Box

Vertex Normal

Vertex

20 1634xCH14 11/13/99 11:03 AM Page 272

20: D3DVECTOR vec7(origin.x,extent.y,extent.z);
21:
22: // Define the normals for the cube
23: D3DVECTOR normal0(0.0f, 0.0f,-1.0f); // Front face
24: D3DVECTOR normal1(1.0f, 0.0f, 0.0f); // Right face
25: D3DVECTOR normal2(0.0f, 0.0f, 1.0f); // Back face
26: D3DVECTOR normal3(-1.0f, 0.0f, 0.0f); // Left face
27: D3DVECTOR normal4(0.0f, 1.0f, 0.0f); // Top face
28: D3DVECTOR normal5(0.0f,-1.0f, 0.0f); // Bottom face
29:
30: D3DVALUE u0,u1,u2,u3,u4,u5,u6,u7;
31: D3DVALUE v0,v1,v2,v3,v4,v5,v6,v7;
32:
33: u0 = 0.0f; v0 = 0.0f;
34: u1 = 0.0f; v1 = 2.0f;
35: u2 = 1.0f; v2 = 0.0f;
36: u3 = 1.0f; v3 = 2.0f;
37: u4 = 2.0f; v4 = 0.0f;
38: u5 = 2.0f; v5 = 2.0f;
39: u6 = 1.0f; v6 = 0.0f;
40: u7 = 1.0f; v7 = 2.0f;
41:
42: // Set up the 8 corners of the cube, this time setting up
43: // vertex normals as well.
44: // Note: First vector is position. Second vector is normal.
45:
46: // front face
47: verts[0]=D3DVERTEX(vec0, normal0, u0, v0);
48: verts[1]=D3DVERTEX(vec1, normal0, u1, v1);
49: verts[2]=D3DVERTEX(vec2, normal0, u2, v2);
50: verts[3]=D3DVERTEX(vec3, normal0, u3, v3);
51:
52: // right
53: verts[4]=D3DVERTEX(vec2, normal1, u2, v2);
54: verts[5]=D3DVERTEX(vec3, normal1, u3, v3);
55: verts[6]=D3DVERTEX(vec4, normal1, u4, v4);
56: verts[7]=D3DVERTEX(vec5, normal1, u5, v5);
57:
58: // back face
59: verts[8]=D3DVERTEX(vec4, normal2, u4, v4);
60: verts[9]=D3DVERTEX(vec5, normal2, u5, v5);
61: verts[10]=D3DVERTEX(vec6, normal2, u6, v6);
62: verts[11]=D3DVERTEX(vec7, normal2, u7, v7);
63:
64: // left face
65: verts[12]=D3DVERTEX(vec6, normal3, u6, v6);
66: verts[13]=D3DVERTEX(vec7, normal3, u7, v7);
67: verts[14]=D3DVERTEX(vec0, normal3, u0, v0);

Adding Realism Through Lighting 273

14

continues

20 1634xCH14 11/13/99 11:03 AM Page 273

68: verts[15]=D3DVERTEX(vec1, normal3, u1, v1);
69:
70: // top face
71: verts[16]=D3DVERTEX(vec1, normal4, u1, v1);
72: verts[17]=D3DVERTEX(vec7, normal4, u7, v7);
73: verts[18]=D3DVERTEX(vec3, normal4, u3, v3);
74: verts[19]=D3DVERTEX(vec5, normal4, u5, v5);
75:
76: // bottom face
77: verts[20]=D3DVERTEX(vec6, normal5, u6, v6);
78: verts[21]=D3DVERTEX(vec0, normal5, u0, v0);
79: verts[22]=D3DVERTEX(vec4, normal5, u4, v4);
80: verts[23]=D3DVERTEX(vec2, normal5, u2, v2);
81: }

As you shall see, adding lighting to your application usually isn’t that hard. After you
have changed the code to use vertex normals and materials, there are just a few simple
steps to actually implementing lighting in your application. First, you must create the
lights. After that, you must activate the Direct3D lighting pipeline. While the application
is running, you might want to animate the lights, and finally, you might need to remove
and delete the lights that were used by your application.

The application for this hour is the same basic application that was used in Hour 13,
“Adding Textures and Z-Buffers to the Scene.” When you run the application, you should
see a block of texture mapped buildings in a dim ambient light. The application has three
lights, but none of them are enabled by default. To enable or disable a light, simply press
the ‘1’, ‘2’, or ‘3’ key on your keyboard. The ‘1’ key is linked to the point light, the ‘2’
key is linked to the spotlight, and the ‘3’ key is linked to the directional light. When you
enable a light, you will see that the light is moving and changing.

Creating the Light
You have already seen the syntax for the SetLight() function and the D3DLIGHT7 struc-
ture. Now it’s time for some real-world application. As mentioned before, there are three
types of lights in Direct3D: point lights, spotlights, and directional lights. The sample
application creates each type of these lights. Listing 14.4 shows the code used to create a
point light.

274 Hour 14

LISTING 14.3 continued

20 1634xCH14 11/13/99 11:03 AM Page 274

LISTING 14.4 Creating a Point Light

1: float lightElevation = 200.0f;
2:
3: //
4: // Light 0 — Initialize the structure.
5: ZeroMemory(&light0, sizeof(D3DLIGHT7));
6:
7:
8: // Position the light above the cubes in the scene
9: // Note: Lights use world space coordinates
10: light0.dvPosition.x = 0.0f;
11: light0.dvPosition.y = lightElevation;
12: light0.dvPosition.z = 0.0f;
13:
14: // Set up for a mostly red point light.
15: light0.dltType = D3DLIGHT_POINT;
16: light0.dcvDiffuse.r = 0.8f;
17: light0.dcvDiffuse.g = 0.2f;
18: light0.dcvDiffuse.b = 0.2f;
19: light0.dcvAmbient.r = 0.0f;
20: light0.dcvAmbient.g = 0.0f;
21: light0.dcvAmbient.b = 0.0f;
22: light0.dcvSpecular.r = 1.0f;
23: light0.dcvSpecular.g = 1.0f;
24: light0.dcvSpecular.b = 1.0f;
25:
26: // Don’t attenuate.
27: light0.dvAttenuation0 = 1.0f;
28: light0.dvRange = D3DLIGHT_RANGE_MAX;
29:
30: // Set the light in d3d
31: lpDevice->SetLight(0, &light0);

Because a point light emanates light in all directions, there is no need to specify a direc-
tion vector for a point light (however it won’t hurt if you do specify a direction vector).
The attenuation, range, and light colors were picked specifically for this application.
Don’t be afraid to experiment with different values until you find something that looks
appropriate. Remember that Direct3D lighting is only an approximation of the real
world, and thus lighting the scene in your application will probably entail more experi-
mentation than other parts of your application. Listing 14.5 shows how the sample appli-
cation creates a spotlight.

Adding Realism Through Lighting 275

14

20 1634xCH14 11/13/99 11:03 AM Page 275

LISTING 14.5 Creating a Spotlight

1: //
2: // Now on to light1 — spotlight
3: ZeroMemory(&light1, sizeof(D3DLIGHT7));
4:
5: light1.dvPosition.x = 0.0f;
6: light1.dvPosition.y = lightElevation;
7: light1.dvPosition.z = 0.0f;
8:
9: // Set up for a mostly green spot light.
10: light1.dltType = D3DLIGHT_SPOT;
11: light1.dcvDiffuse.r = 0.2f;
12: light1.dcvDiffuse.g = 0.8f;
13: light1.dcvDiffuse.b = 0.2f;
14: light1.dcvAmbient.r = 0.0f;
15: light1.dcvAmbient.g = 0.0f;
16: light1.dcvAmbient.b = 0.0f;
17: light1.dcvSpecular.r = 1.0f;
18: light1.dcvSpecular.g = 1.0f;
19: light1.dcvSpecular.b = 1.0f;
20:
21: // Don’t attenuate.
22: light1.dvRange = D3DLIGHT_RANGE_MAX;
23:
24:
25: light1.dvDirection = D3DVECTOR(0,-1, 0); // point

➥directly downward (in the -y direction)
26: light1.dvFalloff = 1.0f; // linear falloff
27: light1.dvTheta = 3.14f/ 3.0f; // inner ring

➥(1/3 *PI radians)
28: light1.dvPhi = 2*3.14f /3.0f; // outer ring

➥(2/3 *PI radians)
29: light1.dvAttenuation0 = 1.0f; // Doesn’t attenuate but still
30: // limited by range (falloff)
31:
32: // Set the light in d3d
33: lpDevice->SetLight(1, &light1);

Sometimes it can be very tricky to get spotlights to look correct in your application. If
you have enabled a spotlight, but you don’t see it anywhere, you might try a few helpful
debugging techniques. Usually the direction vector you have specified for the spotlight is
wrong, but it’s hard to guess randomly what the correct direction vector should be.
Instead, it’s often helpful to make the spotlight big and bright. Usually this causes the
spotlight to light something in your scene, allowing you to fix the direction vector. To
make your spotlight bigger and brighter, you should increase the spotlight’s range, lower

276 Hour 14

20 1634xCH14 11/13/99 11:03 AM Page 276

the spotlight’s falloff and attenuation, increase the spotlight’s phi angle, and increase the
spotlight’s diffuse color. If you are still having trouble, render a sphere at the spotlight’s
position in your scene, and you should be able to see which face of the sphere is lit.

Directional lights are probably the easiest to create, and they are also the best performing
lights in Direct3D. If you find your application running too slowly after adding lighting,
keep in mind that directional lights are the fastest, followed by point lights, and finally
spotlights. Listing 14.6 shows the code to create a directional light.

LISTING 14.6 Creating a Directional Light

1: //
2: // Now on to light2 — directional
3: ZeroMemory(&light2, sizeof(D3DLIGHT7));
4:
5: // Note Position is not used in directional lighting
6: // just the Direction of the light
7: light2.dvDirection.x = 0.0f;
8: light2.dvDirection.y = -1.0f;
9: light2.dvDirection.z = 0.0f;
10:
11: // Set up for a mostly blue directional light
12: light2.dltType = D3DLIGHT_DIRECTIONAL;
13: light2.dcvDiffuse.r = 0.2f;
14: light2.dcvDiffuse.g = 0.2f;
15: light2.dcvDiffuse.b = 0.8f;
16: light2.dcvAmbient.r = 0.0f;
17: light2.dcvAmbient.g = 0.0f;
18: light2.dcvAmbient.b = 0.0f;
19: light2.dcvSpecular.r = 1.0f;
20: light2.dcvSpecular.g = 1.0f;
21: light2.dcvSpecular.b = 1.0f;
22:
23: // Set the light in d3d
24: lpDevice->SetLight(2, &light2);

Activating the Lighting Pipeline
Simply creating lights doesn’t automatically make them appear in your scene. In addition
to enabling each light individually, you must also enable the entire Direct3D lighting
pipeline. You can enable the Direct3D lighting pipeline by calling
IDirect3DDevice7::SetRenderState(), passing D3DRENDERSTATE_LIGHTING as the first
parameter, and TRUE as the second parameter. Listing 14.7 shows the sample code.

Adding Realism Through Lighting 277

14

20 1634xCH14 11/13/99 11:03 AM Page 277

LISTING 14.7 Enabling the Lighting Pipeline

// Enable Direct3D lighting.
lpDevice->SetRenderState(D3DRENDERSTATE_LIGHTING, TRUE);

278 Hour 14

If you are using vertex buffers in your application, enabling the lighting
pipeline is slightly different. When you call the
IDirect3DVertexBuffer7::ProcessVertices() or
IDirect3DVertexBuffer7::ProcessVerticesStrided() function, you must
include the D3DVOP_LIGHT flag.

In some cases, you might find that you only want to enable or disable one of the lights in
your application. The 1, 2, and 3 keys toggle the individual lights in the sample applica-
tion on or off. To enable or disable a certain light, you must call the
IDirect3DVertexBuffer7::LightEnable() function. Listing 14.8 shows the sample
code to toggle a specific light on or off.

LISTING 14.8 Toggling a Specific Light

1: void toggle_light(int light_number)
2: {
3: BOOL on;
4:
5: // Is the light enabled/on ?
6: lpDevice->GetLightEnable(light_number, &on);
7:
8: // If it is, disable it, otherwise turn it on
9: if (on)
10: lpDevice->LightEnable(light_number, FALSE);
11: else
12: lpDevice->LightEnable(light_number, TRUE);
13: }

Animating Lights in the Scene
To animate the lights in your scene, you simply need to update their position and/or
direction and then re-render the scene. The sample application moves the lights in a cir-
cular pattern above the texture-mapped buildings. In the case of the directional light, the
sample application changes the directional light’s direction vector. In addition, there is a
timer to make sure that the lights aren’t moving too fast. Listing 14.9 shows the code
used by the application to update light position and direction.

20 1634xCH14 11/13/99 11:03 AM Page 278

LISTING 14.9 Animating the Lights in the Scene

1: void move_lights()
2: {
3: //
4: // constants for the function
5: //
6: // radius of the circular path the light follows
7: const D3DVALUE radius = 150.0f;
8: // change in angle in radians per second (approx. PI/4 -> 1/8 turn)
9: const D3DVALUE rads_sec = 3.14f /4.0f;
10:
11: // current angle in radians for light0 (base at 0 radians)
12: static D3DVALUE angle0 = 0;
13: // current angle in radians for light1 (base 1/3 of the

➥way 2/3*pi radians)
14: static D3DVALUE angle1 = 2*3.14f /3.0f;
15: // current angle in radians for light2 (base 2/3 of the

➥way 4/3*pi radians)
16: static D3DVALUE angle2 = 4*3.14f /3.0f;
17: static DWORD last_time = timeGetTime(); // last time

➥we moved light
18:
19: //
20: // Calcluate angle change - (# of millisecs / 1000) * radians

➥per second = radians
21: //
22: DWORD current_time = timeGetTime();
23: D3DVALUE angle_delta = ((current_time - last_time) / 1000.0f)

➥*rads_sec;
24:
25: // Add angle for next frame for each of the light angles
26: angle0 += angle_delta;
27: angle1 += angle_delta;
28: angle2 += angle_delta;
29:
30: D3DLIGHT7 light;
31:
32: //
33: // Calculate new position based on polar (x’, y’) = (r*cos(theta),

➥r*sin(theta))
34: // Do it for each light - Equally space the lights around the circle
35: //
36: lpDevice->GetLight(0, &light);
37: light.dvPosition.x = radius * (D3DVALUE) cos(angle0);
38: light.dvPosition.z = radius * (D3DVALUE) sin(angle0);
39: light.dvPosition.y = lightElevation;

Adding Realism Through Lighting 279

14

continues

20 1634xCH14 11/13/99 11:03 AM Page 279

40: lpDevice->SetLight(0, &light); // Set/Change the lights state
41:
42: lpDevice->GetLight(1, &light);
43: light.dvPosition.x = radius * (D3DVALUE) cos(angle1);
44: light.dvPosition.z = radius * (D3DVALUE) sin(angle1);
45: light.dvPosition.y = lightElevation;
46: lpDevice->SetLight(1, &light); // Set/Change the lights state
47:
48: //
49: // The direction vector is moved not the position vector for directional

➥lights
50: lpDevice->GetLight(2, &light);
51:
52: // Multiply by -1 to get the correct direction vector
53: // - All 3 lights will be equally spaced around the circle
54:
55: light.dvDirection.x = -1 * (D3DVALUE) cos(angle2);
56: light.dvDirection.z = -1 * (D3DVALUE) sin(angle2);
57: light.dvDirection.y = 0; //Always aim through y=0 regardless of x and z
58: lpDevice->SetLight(2, &light); // Set/Change the lights state
59:
60: last_time = current_time; // store the time for the next pass
61: }

Removing the Lights
If you want to turn the lighting pipeline off completely, you can call
IDirect3DDevice7::SetRenderState(), passing D3DRENDERSTATE_LIGHTING as the first
parameter, and FALSE as the second parameter. As mentioned before, you can also disable
a certain light by calling the IDirect3DVertexBuffer7::LightEnable() function.

Summary
Lighting is a great way to bring more realism to your application. In addition, as more
and more video cards implement the Direct3D lighting pipeline in hardware, it will be
advantageous to use Direct3D lighting. You now know the basics of materials, vertex
normals, and the different types of Direct3D lights, which will allow you to easily add
lighting to your application.

280 Hour 14

LISTING 14.9 continued

20 1634xCH14 11/13/99 11:03 AM Page 280

Q&A
Q Why don’t I see any shadows in my scene when I use Direct3D lighting?

A Because of performance concerns, shadows are not implemented in the Direct3D
lighting pipeline. Various techniques can be used to create shadows (such as the
stencil buffer). For more information about implementing shadows into your appli-
cation, you should first consult the Direct3D SDK documentation.

Q Why do the three different types of light all perform differently?

A Each type of light in Direct3D has been optimized for the special case it presents.
Directional lighting is fastest because there are no calculations dealing with range,
attenuation, or position and because the direction is constant. A positional light is
slightly slower because it has to take into account the attenuation and range of the
light. Finally, the spotlight is slowest because it has to perform calculations with
every single element of the D3DLIGHT7 structure.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and get you thinking about how to put your knowledge into practice. The
answers to the quiz are in Appendix A, “Answers.”

Quiz
1. What are the three types of lights implemented by the Direct3D lighting pipeline?

2. How do you enable/disable the Direct3D lighting pipeline?

3. How do you enable/disable a specific light in Direct3D?

4. How do you create a light in Direct3D?

5. What is ambient light?

6. What is diffuse light?

7. What is specular light?

8. What is a vertex normal, and what is it used for?

9. What do the theta and phi elements of the D3DLIGHT7 structure specify, and what
are their valid ranges?

10. What are the three different attenuation factors?

Adding Realism Through Lighting 281

14

20 1634xCH14 11/13/99 11:03 AM Page 281

Exercises
1. Experiment with the color values of the lights and the material values of the

objects in the sample application. Set the diffuse, ambient, and specular compo-
nents of the lights equal to white light (red = 1.0, green = 1.0, blue = 1.0) and try
different material values. Then set the diffuse, ambient, and specular material val-
ues equal to white and change the values of the lights. Before you run the applica-
tion again, try to guess what the results will be.

2. Experiment with the different variables of each light (range, direction, attenuation,
and so on). Try to predict the changes you will see in the application before you
run it.

282 Hour 14

20 1634xCH14 11/13/99 11:03 AM Page 282

Hour
15 Importing 3D Objects and Animations

Into the Scene

16 Modeling a Complex World—Applying
Physics and Object Hierarchies

17 Introducing DirectInput—Getting User
Input

18 Getting Through to the User—Force
Feedback

19 3D Sound—From Planning to Doppler
Effects

PART VI
Direct3D Immediate
Mode

21 1634xPart VI 11/13/99 11:21 AM Page 283

21 1634xPart VI 11/13/99 11:21 AM Page 284

HOUR 15
Importing 3D Objects
and Animations Into the
Scene

Up until now, the 3D objects that you have created in your application have
been rather simple. In this hour, you will be introduced to a new method of
creating and using 3D objects in your application, no matter how complex
they might be. In this hour, you will learn the following:

• The different 3D modeling packages and file formats.

• The specifics of the Direct3D X file format.

• How to read and use Direct3D X files in your application.

• How to use the CONV3DS utility to create Direct3D X files.

22 1634xCH15 11/13/99 11:10 AM Page 285

An Overview of 3D Modeling Packages
3D Studio, Lightwave, Maya—you have probably heard the names of these professional
3D modeling packages before. In recent years, there have been more and more 3D
modeling applications to choose from. Which 3D modeling package is best is irrelevant
to the discussion here. The important thing to know is that just about every 3D modeling
application out there has its own proprietary 3D file format. Luckily, most 3D modeling
packages also support 3D Studio’s .3ds file format. The 3D Studio format doesn’t pose a
problem to you because a utility is included with the DirectX 7 SDK that will allow you
to convert 3D Studio files to Direct3D X files. Direct3D X files are easy to use in your
application, and they will allow you to build scenes filled with complex 3D objects
easily.

The Direct3D X File Format
Now it’s time to get into the Direct3D X file specifics. Direct3D X files are template dri-
ven. You can think of each template as a different section of the file that describes a par-
ticular part of a 3D model. For example, there are templates to store vertex coordinates,
vertex colors, vertex normals, materials, texture coordinates, and so on. The Direct3D X
file format can be either text-based or binary-based. The examples given in this hour will
use text-based X files because they are easy to read. However, if performance and file
size are considerations, you will probably want to create binary X files.

Sometimes the easiest way to learn the structure of a file is to look at it. Listing 15.1 is a
simple Direct3D X file. Don’t worry if you don’t understand any of it yet; each part of
the file will be dissected and explained later in the hour.

LISTING 15.1 A Sample Direct3D X File

1: xof 0302txt 0064
2:
3: Header {
4: 1;
5: 0;
6: 1;
7: }
8:
9: // Create a blue square:
10: // Will require: 4 vertices
11: // 2 triangles
12: // blue material
13:
14: // the blue material:

286 Hour 15

22 1634xCH15 11/13/99 11:10 AM Page 286

15: // r = 0.0, g = 0.0, b = 1.0, a = 1.0
16: Material BlueMaterial {
17: 0.0;0.0;1.0;1.0;; // face/triangle color
18: 1.0; // power
19: 0.0;0.0;0.0;; // specular color
20: 0.0;0.0;0.0;; // emissive color
21: }
22:
23: // the square mesh:
24: Mesh Square {
25: 4; // number of vertices
26: 1.0;1.0;0.0;, // vertex 0
27: -1.0;1.0;0.0;, // vertex 1
28: -1.0;-1.0;0.0;, // vertex 2
29: 1.0;-1.0;0.0;; // vertex 3
30:
31: 2; // number of triangles
32: 3;0,1,2;, // triangle 0
33: 3;0,2,3;; // triangle 1
34:
35: // now, provide material information:
36: MeshMaterialList {
37: 1; // 1 material used
38: 2; // 2 triangles
39: 0, // triangle 0 uses material 0
40: 0;; // triangle 1 uses material 0
41: {BlueMaterial} // material 0: the blue material
42: }
43:
44: MeshNormals {
45: 1; // all vertices have same normal
46: 0.0;0.0;1.0;,
47:
48: 2; // 2 faces to define normals for
49: 3;0,0,0;,
50: 3;0,0,0;
51: }
52:
53: } // end of mesh

At the beginning of every Direct3D X file is a file header. The header contains four dif-
ferent fields:

• A 4-byte “magic number” (the value xof).

• A 4-byte version number of the file.

• A 4-byte format type of the file; txt for a text file, bin for a binary file, tzip for a
compressed text file, and bzip for a compressed binary file.

Importing 3D Objects and Animations Into the Scene 287

15

22 1634xCH15 11/13/99 11:10 AM Page 287

• A 4-byte value indicating the size of floats. This value can be 0064 for 64-bit floats
or it can be 0032 for 32-bit floats.

You can add comments to every line of a Direct3D X file. Comments are preceded with
double-slashes (// C++ style comment) or the number sign (# comments go here).
Comments are useful because they will remind you what each template is for, and they
will allow others to understand the overall structure of the file easily. As with comment-
ing your code, it’s rarely the case that you will have too many comments!

Everything after the file header is a template. A template tells the program how to inter-
pret the data that it reads from the file. Each template is composed of four general parts.
First, each template must have a unique name. The name might consist of alphanumeric
characters and/or the underscore character, however it can’t start with a number. Second,
each template has a universally unique identifier (often referred to as a UUID) that must
be surrounded by angle brackets. Third, the template will have a list of member data
types. A set of primitive data types (shown in Listing 15.2) can be used, however you can
also use other templates in this section as well. Finally, the last part of a template is the
template restrictions. Depending on the restrictions defined in a template, the template is
considered to be open, closed, or restricted. The restrictions determine what data types
can be included in the rest of the template. Open templates can include any other data
type, closed templates can’t include any other data types, and restricted templates can
only include certain listed data types. To indicate an open template, you add three peri-
ods enclosed in brackets ([...]) to the end of your template. To indicate a restricted
template, you add a list of data types, optionally followed by their UUIDs, enclosed in
square brackets. To indicate a closed template, no extra syntax is required. Several tem-
plates are already defined for Direct3D X files. Listing 15.3 shows a set of sample tem-
plates that are already defined by Direct3D.

LISTING 15.2 Primitive Data Types

1: Data Type: Size:
2: WORD 16 bits
3: DWORD 32 bits
4: FLOAT IEEE float
5: DOUBLE 64 bits
6: CHAR 8 bits
7: UCHAR 8 bits
8: BYTE 8 bits
9: STRING NULL-terminated string

288 Hour 15

22 1634xCH15 11/13/99 11:10 AM Page 288

LISTING 15.3 Sample Templates

1: // The ColorRGB Template: (a closed template)
2:
3: template ColorRGB {
4: <D3E16E81-7835-11cf-8F52-0040333594A3>
5: FLOAT red;
6: FLOAT green;
7: FLOAT blue;
8: // declare it a closed template (no extra syntax)
9: }
10:
11: // The MeshMaterialList Template: (a restricted template)
12:
13: template MeshMaterialList {
14: <F6F23F42-7686-11cf-8F52-0040333594A3>
15: DWORD nMaterials;
16: DWORD nFaceIndexes;
17: array DWORD faceIndexes[nFaceIndexes];
18: [Material] // declare it a restricted template
19: }
20:
21: // The Material Template: (an open template)
22:
23: template Material {
24: <3D82AB4D-62DA-11cf-AB39-0020AF71E433>
25: ColorRGBA faceColor;
26: FLOAT power;
27: ColorRGB specularColor;
28: ColorRGB emissiveColor;
29: [...] // declare it an open template
30: }

The templates declared in Listing 15.3 should look familiar because all these templates
were used in Listing 15.1. As you can see in Listing 15.3, a template can contain any
combination of primitive data types or other templates in its member list. The specifics
on each primitive data type available are shown in Listing 15.2.

You can create an array of any data type by adding the keyword array in front of the
data type and by specifying the array size in square brackets immediately following the
data type name. Listing 15.3 has a simple example of using an array. In the
MeshMaterialList template, there is an array of DWORDs. You specify multidimensional
arrays in a Direct3D X file the same way you specify multidimensional arrays in C/C++.

A special template, called the header template, should be included in every Direct3D X
file. It can be used to store any type of application-specific data that you want. The
header has a flags member. Only the first bit of the flags member is defined. If the first

Importing 3D Objects and Animations Into the Scene 289

15

22 1634xCH15 11/13/99 11:10 AM Page 289

bit is on, the data following the header template will be read as text. If the first bit is off,
the data following the header template will be read as binary. You can have multiple
header templates in your X file to switch between binary and text reading modes. Listing
15.4 shows the template specification for the header template.

LISTING 15.4 The Header Template

1: template Header {
2: <3D82AB43-62DA-11cf-AB39-0020AF71E433>
3: WORD major; // application-specific data
4: WORD minor; // application-specific data
5: DWORD flags; // flags
6: }

Before you are exposed to the rest of the major templates you will be working with, it is
time for a more complex example. Don’t worry if things seem overwhelming right now;
the following sections will explain everything. Listing 15.5 is a more complex example
of a Direct3D X file.

LISTING 15.5 A Sample Direct3D X File

1: xof 0302txt 0064
2:
3: Header {
4: 1;
5: 0;
6: 1;
7: }
8:
9: // Create a texture-mapped cube
10: // Will require: 8 vertices
11: // 6 faces
12: // white material
13: // texture
14:
15: // the white material, with some texture:
16: // r = 1.0, g = 1.0, b = 1.0, a = 1.0
17: Material WhiteMaterial {
18: 1.0;1.0;1.0;1.0;; // face/triangle color
19: 1.0; // specular power
20: 0.0;0.0;0.0;; // specular color
21: 0.0;0.0;0.0;; // emissive color
22:
23: TextureFileName {
24: “SomeTexture.ppm”;
25: }

290 Hour 15

22 1634xCH15 11/13/99 11:10 AM Page 290

26: }
27:
28: // the cube mesh:
29: Mesh Cube {
30: 8; // number of vertices
31: 1.0;1.0;1.0;, // vertex 0
32: 1.0;1.0;-1.0;, // vertex 1
33: 1.0;-1.0;-1.0;, // vertex 2
34: 1.0;-1.0;1.0;, // vertex 3
35: -1.0;1.0;1.0;, // vertex 4
36: -1.0;1.0;-1.0;, // vertex 5
37: -1.0;-1.0;-1.0;, // vertex 6
38: -1.0;-1.0;1.0;, // vertex 7
39:
40: 6; // number of faces
41: 4;0,1,2,3;, // face 0
42: 4;3,2,6,7;; // face 1
43: 4;7,6,5,4;, // face 2
44: 4;4,5,1,0;; // face 3
45: 4;5,6,2,1;, // face 4
46: 4;0,3,7,4;; // face 5
47:
48: // now, provide material information:
49: MeshMaterialList {
50: 1; // 1 material used
51: 6; // 6 faces
52: 0, // face 0 uses material 0
53: 0, // face 1 uses material 0
54: 0, // face 2 uses material 0
55: 0, // face 3 uses material 0
56: 0, // face 4 uses material 0
57: 0;; // face 5 uses material 0
58: {BlueMaterial} // material 0: the blue material
59: }
60:
61: MeshNormals {
62: 6; // 6 normals, one for each face
63: 1.0;0.0;0.0;, // normal 0
64: 0.0;-1.0;0.0;, // normal 1
65: -1.0;0.0;0.0;, // normal 2
66: 0.0;1.0;0.0;, // normal 3
67: 0.0;0.0;-1.0;, // normal 4
68: 0.0;0.0;1.0;; // normal 5
69:
70: 6; // 6 faces to define normals for
71: 4;0,0,0;, // face 0 uses normal 0
72: 4;1,1,1;, // face 1 uses normal 1
73: 4;2,2,2;, // face 2 uses normal 2
74: 4;3,3,3;, // face 3 uses normal 3
75: 4;4,4,4;, // face 4 uses normal 4

Importing 3D Objects and Animations Into the Scene 291

15

continues

22 1634xCH15 11/13/99 11:10 AM Page 291

76: 4;5,5,5; // face 5 uses normal 5
77: }
78:
79: MeshTextureCoords {
80: 8; // 8 texture coordinates, one for each vertex
81: 1.0;1.0; // vertex 0
82: 0.0;1.0; // vertex 1
83: 0.0;0.0; // vertex 2
84: 1.0;0.0; // vertex 3
85: 1.0;0.0; // vertex 4
86: 0.0;0.0; // vertex 5
87: 0.0;1.0; // vertex 6
88: 1.0;1.0;; // vertex 7
89: }
90:
91: } // end of mesh

Now it’s time to look more closely at the templates being used by the samples. As men-
tioned before, Direct3D defines several default templates for your use in Direct3D X
files. All the examples in this hour will use these predefined templates.

Vertex Storage
When you need to store vertices of a 3D object, you will almost always be storing them
in a mesh template. An exception is that you might store a commonly used vertex in a
Vector template. Then you can reference this vertex by typing in the vector’s name
instead of typing out the x, y, and z coordinates. Listing 15.6 has the Direct3D specifica-
tion for the Vector, MeshFace, and Mesh templates.

LISTING 15.6 The Vector, MeshFace, and Mesh Templates

1: template Vector {
2: <3D82AB5E-62DA-11cf-AB39-0020AF71E433>
3: FLOAT x;
4: FLOAT y;
5: FLOAT z;
6: }
7:
8: template MeshFace {
9: <3D82AB5F-62DA-11cf-AB39-0020AF71E433>
10: DWORD NumFaceVertexIndices;
11: array DWORD faceVertexIndices[NumFaceVertexIndices];
12: }
13:
14: template Mesh {

292 Hour 15

LISTING 15.5 continued

22 1634xCH15 11/13/99 11:10 AM Page 292

15: <3D82AB44-62DA-11cf-AB39-0020AF71E433>
16: DWORD NumVertices;
17: array Vector vertices[NumVertices];
18: DWORD NumFaces;
19: array MeshFace faces[NumFaces];
20: [...]
21: }

As you can see, the mesh template is an open template and the vector template is a
closed template. The vector template is closed because no other information needs to be
associated with a vector. All you need is the vector coordinates, nothing more. However,
in the case of the mesh template, more information might be associated with a certain
mesh object. For example, in most cases, you will want to specify vertex normals and
materials for each mesh.

The first DWORD in the mesh, called NumVertices, specifies the number of vertices in the
mesh. Following that, there is an array of Vectors. Each vector specifies a vertex in the
mesh. After that, a DWORD called NumFaces exists. NumFaces is the number of faces the
mesh has. Next, there is an array of MeshFaces. A MeshFace contains information about a
single face of a 3D model—a single triangle, for example. Each MeshFace is composed
of a DWORD specifying the number of vertices the MeshFace will reference and an array of
DWORDs specifying the specific vertex indices.

Vertex Colors
A Mesh isn’t very interesting until you add some color to it. The best way to add color is
by using the Material template. That way the 3D object will look correct if the Direct3D
lighting pipeline is used. To add materials to your existing Mesh template, you must add a
MeshMaterialList template to the end of your Mesh. As you know, each material is com-
posed of several colors. Thus, it isn’t surprising to know that the Material template uses
the ColorRGBA and the ColorRGB templates. Listing 15.7 shows the definitions of the
ColorRGBA, ColorRGB, Material, and MeshMaterialList templates.

LISTING 15.7 The ColorRGBA, ColorRGB, Material, and MeshMaterialList
Templates

1: template ColorRGBA {
2: <35FF44E0-6C7C-11cf-8F52-0040333594A3>
3: FLOAT red;
4: FLOAT green;
5: FLOAT blue;
6: FLOAT alpha;

Importing 3D Objects and Animations Into the Scene 293

15

continues

22 1634xCH15 11/13/99 11:10 AM Page 293

7: }
8:
9: template ColorRGB {
10: <D3E16E81-7835-11cf-8F52-0040333594A3>
11: FLOAT red;
12: FLOAT green;
13: FLOAT blue;
14: }
15:
16: template Material {
17: <3D82AB4D-62DA-11cf-AB39-0020AF71E433>
18: ColorRGBA faceColor;
19: FLOAT power;
20: ColorRGB specularColor;
21: ColorRGB emissiveColor;
22: [...]
23: }
24:
25: template MeshMaterialList {
26: <F6F23F42-7686-11cf-8F52-0040333594A3>
27: DWORD NumMaterials;
28: DWORD NumFaceIndexes;
29: array DWORD faceIndexes[NumFaceIndexes];
30: [Material]
31: }

This should be straightforward now. The only difference between the ColorRGBA and the
ColorRGB templates is the alpha component in the ColorRGBA template. The Material
template uses the ColorRGBA template to specify the face color and ColorRGB templates
to specify the specular and emissive colors of the material. A MeshMaterialList simply
assigns a material to each face index. Notice that the MeshMaterialList is a restricted
template. It only allows Material templates to be included.

Vertex Normals
Any time you are performing lighting calculations, you will need a list of vertex normals
included in your Mesh template. The MeshNormals template builds on other templates
already mentioned. Listing 15.8 shows the definition for the MeshNormals template.

LISTING 15.8 The MeshNormals Template

1: template MeshNormals {
2: <F6F23F43-7686-11cf-8F52-0040333594A3>
3: DWORD NumNormals;

294 Hour 15

LISTING 15.7 continued

22 1634xCH15 11/13/99 11:10 AM Page 294

4: array Vector normals[NumNormals];
5: DWORD NumFaceNormals;
6: array MeshFace faceNormals[NumFaceNormals];
7: }

The first part of the template is the number of normals and an array of those normals.
The second part of the template is the number of face normals and an array of indices to
the normals for each face. In most cases, NumFaceNormals will be equal to the number of
faces defined in the mesh. The MeshNormals template is useful because it allows you to
specify multiple normals for the same vertex. In the case of a cube, each vertex has three
different normals (a different normal for each face of the cube the vertex defines).
Because six faces are on a cube, you will have a total of six different normals. Rather
than repeating each vertex three times, defining a different normal for each (as done in
earlier hours), you can simply define the eight vertices and six normals, and the
MeshNormals template will take care of the rest. As you can guess, this is more efficient,
and it uses up less space.

Texture Maps
When you create a new Material template, you can optionally specify a
TextureFileName template. This will associate a texture with a material. To add tex-
ture coordinates to your mesh, you use the MeshTextureCoords template. The
MeshTextureCoords template uses the Coords2d template, which you haven’t seen yet.
All of these are rather simple templates. Listing 15.9 shows the definitions for each.

LISTING 15.9 The Coords2d, TextureFileName, and MeshTextureCoords
Templates

1: template Coords2d {
2: <F6F23F44-7686-11cf-8F52-0040333594A3>
3: FLOAT u;
4: FLOAT v;
5: }
6:
7: template TextureFileName {
8: <A42790E1-7810-11cf-8F52-0040333594A3>
9: STRING fileName;
10: }
11:
12: template MeshTextureCoords {
13: <F6F23F40-7686-11cf-8F52-0040333594A3>
14: DWORD NumTextureCoords;
15: array Coords2d textureCoords[NumTextureCoords];
16: }

Importing 3D Objects and Animations Into the Scene 295

15

22 1634xCH15 11/13/99 11:10 AM Page 295

Use of these templates is very straightforward. The TextureFileName template is simply
the string containing the filename of the file to be loaded. MeshTextureCoords consists
of a NumTextureCoords variable; usually this will be the same as the number of vertices
in the mesh, and an array of Coords2d, which are the u-v texture coordinates.

Frame Hierarchy
You haven’t seen any examples of the Frame template yet. The word frame denotes a
frame of reference for meshes. All the objects in a frame are optional, however most of
the time you will provide a 4×4 matrix, followed by a list of meshes. The 4×4 matrix
specifies the transform that will be applied to all the meshes and frames listed below it.
You can imagine the case where the model is a car. Instead of modeling the entire car as
a single mesh, you could break the model into a car body and a single car wheel. Then,
you would have to draw the wheel at the four different spots it could be on the car. Using
frames, this becomes an easy task. The base frame would contain the base transformation
matrix, the mesh of the car body, and four other frames, one for each wheel. These
“wheel frames” would contain a transformation matrix that would place the wheel in the
appropriate spot relative to the car. The new templates associated with frames that you
haven’t seen yet are the Matrix4x4 template, the FrameTransformMatrix template, and
the Frame template. Listing 15.10 shows the definitions of each.

LISTING 15.10 The Matrix4x4, FrameTransformMatrix, and Frame Templates

1: template Matrix4x4 {
2: <F6F23F45-7686-11cf-8F52-0040333594A3>
3: array FLOAT matrix[16];
4: }
5:
6: template FrameTransformMatrix {
7: <F6F23F41-7686-11cf-8F52-0040333594A3>
8: Matrix4x4 frameMatrix;
9: }
10:
11: template Frame {
12: <3D82AB46-62DA-11cf-AB39-0020AF71E433>
13: [...]
14: }

The definitions are straightforward, but they don’t make the usage of the templates very
clear. Listing 15.11 is a short example that demonstrates the car example previously
mentioned.

296 Hour 15

22 1634xCH15 11/13/99 11:10 AM Page 296

LISTING 15.11 A Simple Example of Using Frames

1: // Assume the following are already defined:
2: // Meshes: CarBody, CarWheel
3: // FrameTransformationMatrix: CarBodyTrans, Wheel1Trans,
4: // Wheel2Trans, Wheel3Trans, Wheel4Trans
5:
6: Frame CarBodyFrame {
7: {CarBodyTrans}
8: {CarBody}
9:
10: Frame Wheel1Frame {
11: {Wheel1Trans}
12: {CarWheel}
13: }
14:
15: Frame Wheel2Frame {
16: {Wheel2Trans}
17: {CarWheel}
18: }
19:
20: Frame Wheel3Frame {
21: {Wheel3Trans}
22: {CarWheel}
23: }
24:
25: Frame Wheel4Frame {
26: {Wheel4Trans}
27: {CarWheel}
28: }
29: }

Note that the transformation matrix for each wheel will rotate and move the wheel to its
appropriate position. In addition, the transformation matrix for either the car body or the
car wheel could scale the car to be any size. This can be a very powerful tool.

Animation Paths
Many templates are designed to set up animations for your 3D object. The first three
templates you will have to familiarize yourself with are the FloatKeys, TimedFloatKeys,
and AnimationKey templates. The FloatKeys template is simply a template that stores an
array of floating-point values and the size of the array. The floating-point values will be
used to define rotations, positions, and scaling changes. The TimedFloatKeys template is
simply a FloatKeys template with an added time variable. An AnimationKey holds an
array of TimedFloatKeys, the size of the array, and a keyType variable. The keyType
variable is a DWORD that can take on the integer value of 0, 1, or 2. This value specifies
whether the animation should perform a rotation, scale, or position change, respectively.
Listing 15.12 shows the definitions for these templates.

Importing 3D Objects and Animations Into the Scene 297

15

22 1634xCH15 11/13/99 11:10 AM Page 297

LISTING 15.12 The FloatKeys, TimedFloatKeys, and AnimationKey Templates

1: template FloatKeys {
2: <F406B180-7B3B-11cf-8F52-0040333594A3>
3: DWORD NumValues;
4: array FLOAT values[NumValues];
5: }
6:
7: template TimedFloatKeys {
8: <10DD46A8-775B-11cf-8F52-0040333594A3>
9: DWORD Time;
10: FloatKeys tfkeys;
11: }
12:
13: template AnimationKey {
14: <10DD46A8-775B-11cf-8F52-0040333594A3>
15: DWORD keyType;
16: DWORD NumKeys;
17: array TimedFloatKeys keys[NumKeys];
18: }

You will use three more important templates when creating animations for 3D objects.
They are the AnimationOptions template, the Animation template, and the
AnimationSet template. Listing 15.13 shows their definitions.

LISTING 15.13 The AnimationOptions, Animation, and AnimationSet Templates

1: template AnimationOptions {
2: <E2BF56C0-840F-11cf-8F52-0040333594A3>
3: DWORD openclosed;
4: DWORD positionquality;
5: }
6:
7: template Animation {
8: <3D82AB4F-62DA-11cf-AB39-0020AF71E433>
9: [...]
10: }
11:
12: template AnimationSet {
13: <3D82AB50-62DA-11cf-AB39-0020AF71E433>
14: [Animation]
15: }

The AnimationOptions template relates directly to the D3DANIMATIONOPTIONS structure.
The openclosed variable should be set to 0 for a closed animation or 1 for an open ani-
mation. A closed animation will play continually, jumping from the last frame to the first

298 Hour 15

22 1634xCH15 11/13/99 11:10 AM Page 298

frame after it has completed the animation. An open animation plays once and then
stops. The positionquality variable should be set to 0 to specify positioning using
splines or 1 to specify linear positioning.

The Animation template is an open template without any required member variables. It
should contain a reference to a frame that the animation will be performed on. For use
with Direct3D retained mode, you can add an AnimationKey template and an
AnimationOptions template to define an animation. The AnimationSet template is a
restricted template that simply holds sets of Animation objects.

How do all these templates work together? Listing 15.14 shows a simple example of an
animation.

LISTING 15.14 A Sample Animation

1: // assume CarFrame is the frame containing our car
2:
3: AnimationSet CarAnimationSet0 {
4: Animation CarDrivingForward {
5: {CarFrame}
6:
7: AnimationOptions {
8: 1;
9: 1;
10: }
11:
12: AnimationKey {
13: 2; // 2 = modify cars position
14: 5; // 5 different keys
15: 100; 3; 0.0, 0.0, 0.0;;,
16: 200; 3; 0.0, 0.0, 10.0;;,
17: 300; 3; 0.0, 0.0, 30.0;;,
18: 400; 3; 0.0, 0.0, 70.0;;,
19: 500; 3; 0.0, 0.0, 150.0;;;
20: }
21: }
22: }

You now know most of the important templates that Direct3D retained mode will recog-
nize and use. Knowing this, you will be able to understand most X files easily.

Importing 3D Objects and Animations Into the Scene 299

15

22 1634xCH15 11/13/99 11:10 AM Page 299

Converting 3D Studio Files: The CONV3DS
Utility

Creating Direct3D X files can be a huge task. The examples you have seen so far are
extremely simple. When you create 3D models using a 3D modeling package, they are
usually extremely complex. The good news is that a utility is included with Direct3D that
will allow you to convert 3D Studio files into Direct3D X files. The name of this utility
is CONV3DS. You will find it included with the DirectX 7 SDK.

In most cases, you will simply be able to run the CONV3DS utility by typing CONV3DS
filename.3ds, where filename is the name of the 3D Studio file you want to convert.
This will produce an X file named filename.X. A useful way to check newly created X
files is to run the program Direct3D RM Viewer. The Direct3D RM Viewer is an applica-
tion that will allow you to view any X file that you like. The Direct3D RM Viewer is also
included with the DirectX 7 SDK.

For a complete reference to the CONV3DS utility, you should refer to the DirectX 7
SDK documentation and the CONV3DS.txt file, a text document that is also included
with the DirectX 7 SDK.

Reading the X File Format
Included with the DirectX 7 SDK, however not well documented, is an object that will
make it very easy for you to load X files into your application. The object is defined in
the file d3dfile.h, and the corresponding implementation of the object is in the file
d3dfile.cpp. The object is called CD3DFile, and it will provide you with a great reference
on the low-level reading of a Direct3D X file as well as making it very easy for you to
get X files into your application quickly.

Three specific public functions are in the CD3DFile object that will be used in the sample
application in this hour. The first function is CD3DFile::Load(). The Load() function
takes one argument: the name (a string) of the X file that you want to load. The second
function is used to scale the geometry loaded by the X files to fit the scene. The function
CD3DFile::Scale() takes a single argument, a floating point variable that it will use to
scale the geometry of the X file. The last function that the sample application uses is the
CD3DFile::Render() function. This function also has one argument, a LPDIRECT3DDE-
VICE7 object, which it will render the X file to. Listing 15.15 shows an example of these
three functions in action.

300 Hour 15

22 1634xCH15 11/13/99 11:10 AM Page 300

LISTING 15.15 Loading and Rendering a Direct3D X File

1: // . . .
2:
3: CD3DFile* car = NULL;
4:
5: car = new CD3DFile();
6:
7: // load the file:
8: if (FAILED(car->Load(“car.x”)))
9: {
10: // handle error
11: }
12: else
13: {
14: // make the car twice as big
15: car->Scale(2.0);
16:
17: // render the car to gLPDevice
18: car->Render(gLPDevice);
19:
20: }

Of course, the code in your application will probably look much different, but this should
give you the basic idea of how to use the functions.

Adding Vehicles to Our Application
Now it is finally time to tie everything you’ve learned in this hour together. The sample
application in this hour builds on the sample application from Hour 14, “Adding Realism
Through Lighting.” In addition to the block of buildings, you will be able to see a heli-
copter circling the rooftops and a car that is parked near the base of one of the buildings.
The rotating blue directional light from Hour 14 was replaced with a stationary white
directional light to allow you to see the models better.

Reading the Model
As mentioned before, we let the CD3DFile object do the work and load the X files into
the application for us. The application has a new object for the helicopter. This object
holds a pointer to a CD3DFile object, and it contains information about the helicopter,
such as position, angle, and velocity. Because the car is stationary, the file is simply
loaded and rendered during the render loop. Listing 15.16 shows the code used in the
sample application to read in the files.

Importing 3D Objects and Animations Into the Scene 301

15

22 1634xCH15 11/13/99 11:10 AM Page 301

LISTING 15.16 Reading a Direct3D X File

1: // load the car model
2:
3: lpXFileCar=new CD3DFile();
4: if(FAILED(lpXFileCar->Load(“car.x”))){
5:
6: // Set error string.
7: ErrStr=Err_LoadingXFile;
8:
9: return FALSE;
10:
11: } else {
12: lpXFileCar->Scale(5.0f);
13: };
14:
15: // load the helicopter model
16:
17: lpXFileHelo=new CD3DFile();
18: if(FAILED(lpXFileHelo->Load(“heli.x”))){
19:
20: // Set error string.
21: ErrStr=Err_LoadingXFile;
22:
23: return FALSE;
24:
25: } else {
26: lpXFileHelo->Scale(5.0f);
27: };
28:
29: // create helicopter object
30: chopper=new CHelicopter(D3DVECTOR(0,250,0),
31: D3DVECTOR(0.0f,0.0f,0.0f),
32: lpXFileHelo);
33:
34: // . . .

Setting Up the Hierarchy
Because two new objects are in the application, you must be careful where you place
them or else they will intersect with other objects in the world. You want to render each
object with respect to the rest of the scene. To render the car with respect to the rest of
the scene, you will perform an additional transformation on the car. The same principle
applies to the helicopter. In the case of the sample application, things have been kept
simple. Because the car is stationary, there is simply a translation to place it in the appro-
priate position. The helicopter, on the other hand, is slightly more complex. The heli-
copter is flying around the rooftops of the buildings. Instead of a simple translation, the

302 Hour 15

22 1634xCH15 11/13/99 11:10 AM Page 302

helicopter body also needs to be rotated on its central axis. Otherwise, it would appear
that the helicopter wasn’t really flying at all. Because the car and helicopter modify the
world transformation matrix before they are rendered, they must restore the original
matrix after they are rendered.

This hierarchical model is working on many other levels in the application. If you have
examined the car and helicopter X files, you will notice that each object is split into its
component pieces. For example, the car separates the body from the lights and the
wheels. Each of these component pieces of the car and helicopter might also perform
some additional transformation so that they are rendered in the appropriate place. It all
goes back to the use of Frame templates. Each frame can provide a transformation matrix
that is applied to the current transformation matrix. In this way, each object is rendered
with respect to all the matrix transformations applied before it. This is an important con-
cept to understand. Listing 15.17 shows the code used in the sample application that is
used to set up the world transformation matrix for the helicopter.

LISTING 15.17 Placing the Helicopter in the Scene: The
CHelicopter::calc_move() Function

1: D3DMATRIX CHelicopter::calc_move(float delt)
2: {
3: cur_ang.x=-pitch*4.5f;
4: cur_ang.y+=steer*delt*0.05f;
5: cur_ang.z=-steer*0.01f;
6:
7: cur_pos.y+=lift*delt*12.0f;
8: cur_pos.x+=sin(cur_ang.y)*-cur_ang.x*75.0f*delt;
9: cur_pos.z+=cos(cur_ang.y)*-cur_ang.x*75.0f*delt;
10:
11: // calculate a decay factor based on time
12: float decay=1.0f-delt*0.2f;
13:
14: // decay the speed and control positions gradually back towards zero
15: lift*=decay;
16: pitch*=decay;
17: steer*=decay;
18:
19: // settle towards clear and level flight
20: cur_ang.x*=decay;
21: cur_ang.z*=decay;
22:
23: // set up rotations and combine into view transform matrix
24: D3DMATRIX matTrans,matRotateY,matRotateZ,matRotateX,view;
25:
26: D3DUtil_SetTranslateMatrix(matTrans,cur_pos.x,cur_pos.y,cur_pos.z);
27:

Importing 3D Objects and Animations Into the Scene 303

15

continues

22 1634xCH15 11/13/99 11:10 AM Page 303

28: D3DUtil_SetRotateXMatrix(matRotateX,cur_ang.x);
29: D3DUtil_SetRotateYMatrix(matRotateY,cur_ang.y);
30: D3DUtil_SetRotateZMatrix(matRotateZ,cur_ang.z);
31:
32: D3DMath_MatrixMultiply(view,matRotateY,matTrans);
33: D3DMath_MatrixMultiply(view,matRotateZ,view);
34: D3DMath_MatrixMultiply(view,matRotateX,view);
35:
36: // return view matrix
37: return view;
38: }

Adding the Object to the Scene
After the world matrix has been changed to take into account the position of the object,
the object needs to be rendered. After an object is rendered, the proper world transforma-
tion matrix needs to be restored. All this takes place in the render_frame() function and
the CHelicopter::draw() function. Listing 15.18 shows the code snippets from the sam-
ple application.

LISTING 15.18 Rendering the Car and Helicopter

1: void render_frame(float elapsed)
2: {
3: // . . .
4:
5: if (chopper)
6: chopper->draw(lpDevice,elapsed);
7:
8: D3DMATRIX world;
9: if (lpXFileCar) {
10: // just translate the car to the appropriate position in the world.
11: D3DUtil_SetTranslateMatrix(world,0,10,-120);
12: lpDevice->SetTransform(D3DTRANSFORMSTATE_WORLD,&world);
13: lpXFileCar->Render(lpDevice);
14: D3DUtil_SetIdentityMatrix(world);
15: lpDevice->SetTransform(D3DTRANSFORMSTATE_WORLD,&world);
16:
17: // . . .
18: }
19:
20: void CHelicopter::draw(LPDIRECT3DDEVICE7 dev,float delt)
21: {
22:
23: // . . .
24:
25: if (meshPtr) {

304 Hour 15

LISTING 15.17 continued

22 1634xCH15 11/13/99 11:10 AM Page 304

26: world=calc_move(delt);
27: lpDevice->SetTransform(D3DTRANSFORMSTATE_WORLD,&world);
28: meshPtr->Render(lpDevice);
29: D3DUtil_SetIdentityMatrix(world);
30: lpDevice->SetTransform(D3DTRANSFORMSTATE_WORLD,&world);
31: }
32:
33: // . . .
34: }

Cleaning Up
Cleanup is a breeze. You simply need to delete the CHelicopter object and the two
CD3DFile objects. Listing 15.19 shows the Cleanup() function used by the sample appli-
cation.

LISTING 15.19 The New Cleanup() Function

1: void Cleanup()
2: {
3: // unload animated object classes
4: SafeDelete(chopper);
5:
6: // unload 3D models
7: SafeDelete(lpXFileCar);
8: SafeDelete(lpXFileHelo);
9:
10: // de-allocate block objects
11:
12: for (int i=0;i<NUM_ROWS;i++)
13: for (int j=0;j<NUM_COLUMNS;j++)
14: SafeDelete(cubes[i][j]);
15:
16: // release 3D interfaces
17:
18: SafeRelease(lpDevice);
19: SafeRelease(lpD3D);
20:
21: // release DirectDraw interfaces
22:
23: SafeRelease(lpDDSPrimary);
24: SafeRelease(lpDD);
25:
26: // display error if one thrown
27:
28: if (ErrStr) {
29: MessageBox(NULL, ErrStr, szCaption, MB_OK);
30: ErrStr=NULL;
31: }
32: }

Importing 3D Objects and Animations Into the Scene 305

15

22 1634xCH15 11/13/99 11:10 AM Page 305

Summary
The Direct3D X file will finally allow you to easily import complex 3D objects into your
application. In this hour, you have learned about the Direct3D X file structure, you have
learned how to create Direct3D X files, and you have seen how to use them in your
application. The Direct3D X file should allow you to easily enhance the look and feel of
your Direct3D application in the future.

Q&A
Q Where can I find a full list of all the templates that Direct3D defines?

A The major templates you should know were all covered in this hour. However, if
you need another reference or a complete list, the best place to look for it is in the
DirectX 7 SDK documentation. In fact, you should familiarize yourself well with
the DirectX 7 SDK documentation because it is a great starting point for most
DirectX questions.

Q How do I convert a text-based X file into a binary-based X file?

A In addition to the CONV3DS utility, two other useful utilities are included with the
DirectX 7 SDK. The first is called CONVX, and it can usually be found in the
same directory as CONV3DS. CONVX will convert X files to and from binary or
text format. The second utility, CONVXOF, will convert files from the XOF format
to the Direct3D X file format. For more information, including a full list of
options, simply run the two different executables from the MS-DOS command
prompt.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and get you thinking about how to put your knowledge into practice. The
answers to the quiz are in Appendix A, “Answers.”

Quiz
1. What is the name of the “special” template that can contain application-specific

information?

2. What are the three different types of template restrictions?

3. What utility can you use to convert 3D Studio files into the Direct3D X file
format?

306 Hour 15

22 1634xCH15 11/13/99 11:10 AM Page 306

4. Which type of Direct3D X file format is better: text or binary?

5. What is the name of the template that is used to store vertices?

Exercises
1. Open the car.x and heli.x files included with the sample application. Notice their

structure and format. Experiment with the files by making a few changes. Open the
files with the Direct3D RM Viewer.

2. Adjust the size of the buildings and the car and the helicopter. Try adding a few
large triangles to represent the ground in the scene. Try to create a new X file that
models the ground and add it to the application.

Importing 3D Objects and Animations Into the Scene 307

15

22 1634xCH15 11/13/99 11:10 AM Page 307

22 1634xCH15 11/13/99 11:10 AM Page 308

HOUR 16
Modeling a Complex
World—Applying Physics
and Object Hierarchies

Hopefully, by now, you’ve given some thought to the possibility that
although it might be neat to render or display 3D objects in a game, those
objects must somehow interact and react in order to seem real to a player.
You have to somehow develop a way for all the objects and the world that
you’ll create for a player to seem believable, and in a sense, realistic.

To accomplish this, it will be helpful for you to spend some time learning
about a few concepts that go a little above just working with any DirectX
API. It’s time to work out some algorithms and code that don’t deal directly
with any DirectX interface, but that do allow you to model your 3D objects
and space to provide a realistic feel to your user. We will use Direct3D to
help put some of this object behavior onscreen.

In this hour, you will learn about modeling object interaction in 3D space.
You will learn about kinematics and motion dynamics, as well as collision

23 1634xCH16 11/13/99 11:15 AM Page 309

detection. You will also get an idea on how to model object “behavior,” at least in terms
of how objects react and affect each other in 3D space.

We’ll also discuss object hierarchies, and how important it is to use this concept when
developing your game. Object hierarchies will be important after you learn about matri-
ces and how to apply transformations and rotation algorithms to many vertices of an
object at once.

We’ll cover a lot of ground in the next hour, so be prepared to visit this hour again.
Unlike most of the other hours in this book, we’ll cover many concepts and some hairy
algorithms over and above using the DirectX API. Do not fear; we’ll also get a chance to
use some of Direct3D.

310 Hour 16

It is important to note, at this point, that many of the algorithms you will
learn in the next hour involve some basic calculus, mathematics, and linear
algebra. If you are a bit rusty on those subjects, it might be helpful to dig
out a calculus textbook to refresh yourself. It’s not critical that you follow all
the math involved in the following hour, as long as you follow the concepts
and take a good look at the code involved.

Reactions and Effects: Defining Real-World
Relationships

Isaac Newton’s Third Law of Motion states, “For every action, there is an equal and
opposite reaction.” If we stick to some very basic rules in physics, such as this one, it
might be helpful to our study of how objects should behave in a game. What Newton was
talking about in this rule is that how an object interacts with other objects should cause
some sort of reaction from those other objects. It might be a minimal reaction, or it might
result in some very sophisticated calculations attempting to model real-world physics.

As video hardware progresses and lightens the processing burden of the CPU for render-
ing 3D animations, we will have more processing time to account for real-world physics.
We’re going to take a look at some of those physics in the next hour, but it will certainly
behoove you to take a look at some math and physics textbooks to improve your knowl-
edge of physics models. As you progress as a game programmer, you should be able to
push yourself and increase the complexities at which your programs operate. As time
goes on, the amount of real-world physics that 3D games incorporate will increase, and
you’ll have to increase your knowledge of those physics systems if you want your pro-
grams to be state-of-the-art. Our examples for this hour are simple, but you’ll certainly
want to take this lesson as a starting point.

23 1634xCH16 11/13/99 11:15 AM Page 310

At this point, it’s also important to realize that what you’ll learn during the rest of this
hour involves dynamic motion. It is much simpler to describe objects in a 3D world if
those objects are static; that is, they do not move or rotate. Of course, by moving our
objects around in 3D space, as you’ll soon learn how to do, we increase the overall com-
plexity of our project. We now have to concern ourselves with complex systems that use
linear algebra, calculus, and physics to give our objects very real properties and motion.
It is the dynamic nature of these objects that increases the complexity of the project.

In our 3D world, there are actually three different spaces, which represent the
differences between the points of origin. Initially, when we create our object, we

describe our object in 3D terms using an origin of (0, 0, 0). This is called model space,
and means that everything at this point in time is assuming that the origin of 0 exists on
some vertex of our object. After our object is defined, we’ll have to transform all the ver-
tices to world space, where the origin of (0, 0, 0) might not be at the same spot as our
object’s origin. Finally, when we are about to render our world, we must transform all
our coordinates to user space, wherein the camera and user’s view are different in origin
than our world. All these transformations have to be calculated easily; luckily, Direct3D
does this for us, as you’ll learn in a little bit.

To make the dynamics of our object interaction more interesting for the user, it is neces-
sary to assign some additional properties to our objects, besides just the sum of their ver-
tices and any textures we use on their surfaces. We must be able to develop some
solutions using algebra and calculus to model real-world physics, and those solutions
will involve things such as mass and velocity. As we work out some of the algorithms
we’ll apply to the movements of our objects, we’ll use those additional properties as
parameters to help solve our equations. As you decide just how much physics you’re
going to apply to your dynamic objects, you’ll need to define additional properties and
assign them to those objects.

Motion Dynamics
Motion dynamics refers to the physics of motion. Motion dynamics is comprised
mainly of two different fields of study: kinematics and kinetics. You might have

heard the term kinematics before and not really have been sure what it meant.
Kinematics is, quite simply, the study of object motion without regard to the forces
applied to those objects to create that motion. Put another way, it’s the study of how
objects move over time, without any regard to what will actually make them move.

The flip side of our study of motion dynamics is kinetics, which is the study of
forces at work on an object or body. Kinetics involves looking at how forces and

torque work on various parts of an object to create motion. For now, we’re not interested
in studying forces, so we’ll limit our study to the kinematics side of the equation.

Modeling a Complex World—Applying Physics and Object Hierarchies 311

16
NEW TERM

NEW TERM

NEW TERM

23 1634xCH16 11/13/99 11:15 AM Page 311

Forward Kinematics
If you visualize a human skeleton for a moment, you can see that it’s actually
made up of a hierarchy of joints, lines, and points. “The arm bone’s connected to

the elbow bone…” and so on. If we track where all the points in this hierarchical scheme
may be at a given time, we are looking at forward kinematics, sometimes called direct
kinematics. It is important to realize that forward kinematics takes into account the fact
that when calculating an object’s or point’s location in space, we must also take into
account all the other connected objects and their positions and orientations.

For example, if we move our skeleton’s arm perpendicular to its body, move its lower
arm straight into the air, and finally, bend the wrist and finger bones up, we now have (in
our mind’s eye) a skeleton standing and waving hello. All the calculations and move-
ments we performed moved forward from the root of the object—the body—throughout
the hierarchy of bones. It is important to realize that the moment we move the upper arm
bone, we are also moving the elbow joint, lower arm bone, wrist joint, and hand bones
along with it. That’s forward kinematics. It’s called forward kinematics because you start
from a root object, and work forward throughout the hierarchy.

Pivot Points and Other Kinematics Features
The study of kinematics involves looking at all the possible ways to change an
object’s orientation or position. The number of ways an object’s orientation can

be changed are called the degrees of freedom. Those degrees of freedom (DOF) are actu-
ally determined by the type of joint used between points. A simple, prismatic joint can be
seen in the piston in Figure 16.1. This joint allows translational freedom in only one
degree: linearly.

312 Hour 16

NEW TERM

NEW TERM

FIGURE 16.1
One degree of transla-
tional freedom. Movement

Another type of joint, called a revolute joint, also allows rotational movement in one
direction. This type of joint can be seen in Figure 16.2. Most of the objects in our 3D
world will have six degrees of freedom: three angular degrees and three linear degrees.
An example of this is shown in Figure 16.3. By looking at this figure, you can see that a
given object can move along three different axes, as well as rotate about those same
axes.

23 1634xCH16 11/13/99 11:15 AM Page 312

FIGURE 16.3
Six degrees of freedom.

Modeling a Complex World—Applying Physics and Object Hierarchies 313

16

FIGURE 16.2
One degree of orbital
freedom.

Movement

Movement

Movement

Movement

Movement

Movement

Movement

Y

X

Z

Obviously, the more degrees of freedom we have, the more complex our solution.
Therefore, it is important to limit the degrees of freedom where possible—this will trans-
late into fewer necessary calculations in your programs, and, consequently, fewer pro-
cessing cycles.

Generally speaking, there are two types of solutions for solving for kinematics
algorithms: closed form solutions and numerical solutions. Closed form solutions

involve noniterative calculations, and can be computed rather quickly. Closed form solu-
tions can typically be used if all the joints in a system are revolute or prismatic, and have
six degrees of freedom. Numerical solutions, which involve iterative calculations, are
more costly to compute, and must be used when your system is too complex to use
closed form solutions.

An example of a numerical solution is a Euler integrator. This solution basically calcu-
lates the integral over some quantum of time for a vector. It’s a general-purpose function
that you can use to calculate a value over time. You would use something like a Euler
integrator when no easy (or quick) closed form solution exists.

One other point to ponder here is whether we’re looking at rigid-body or soft-body
dynamics. A rigid body, as you might expect, refers to an object that does not change

NEW TERM

23 1634xCH16 11/13/99 11:15 AM Page 313

shape or structure. On the other hand, a soft body can change shape and, therefore,
increase the complexity of our physics system. Until now, and for the rest of this hour,
we’ve been referring to rigid-body dynamics. Because of the introductory nature of this
book, and the limited time we have in this hour, we can’t cover the extra solutions
needed for soft-body dynamics. I’ll leave that as an exercise for you to work on.

Inverse Kinematics
It will become necessary, during game play, to take one end part of our hierarchi-
cal skeleton and move it to a point in space—say, our skeleton’s hand. This end

point is often called the end effector. You must come up with a way to calculate all posi-
tions and orientations of the connected objects, all the way back through our object hier-
archy to the root object. This is called inverse kinematics, and this term essentially
describes the opposite of forward kinematics. Instead of taking a base part of an object
hierarchy and working out to the leaf nodes of our hierarchical tree, we start at the leaf
nodes and work back to the root object.

Object Hierarchies
As we talk about kinematics and its definition in terms of motion dynamics, we should
look at how we define a system of related objects. In kinematics, at least, objects are usu-
ally connected to each other with joints. Therefore, a set of objects connected by using
joints represents a larger, more complex object. Very often, that complex object is some
sort of figure or machine, although it might not always be so.

What we must do is define objects in terms of frames. A frame is essentially an
object, or part of an object, that can be transformed independent of other frames

it might be connected to.

A frame, in our example, can be composed of meshes of vertices or other child frames.
To apply forward kinematics, we apply a transform to a frame and all its child frames,
recursively. To apply inverse kinematics, we start with a child frame or end effector, and
apply a transformation to it, as well as to its parent frame (and the parent frame’s other
children), recursively.

These transformations are performed for one of two reasons. First, we might be trying to
move an end effector to a new position (and orientation), and will need to move all the
connected objects and joints back to the root of our object hierarchy. Alternatively, we
might just be interested in moving one part of our object hierarchy, not at the end of the
hierarchy, and will need to appropriately move all the connected objects.

314 Hour 16

NEW TERM

NEW TERM

23 1634xCH16 11/13/99 11:15 AM Page 314

As we solve for inverse kinematic motions, it might be useful to simulate damp-
ing, which is constraining the motion of root or parent objects. Damping is done

so that in moving a child node to a point in space, we don’t move just one node that is
close to the root. In other words, when we calculate our transformations for each joint,
we move a little at a time, from the root or parent on down to the child, so that the total
movement seems more natural. Damping essentially means making more joints move to
create a kinematic motion, instead of just the one or two joints closest to the root. The
more damping we use, the more constrained each movement along the joint hierarchy
will be.

Using Matrices to Combine Motions
So how do we apply transformations to any given vertex or vector? Because either type
of value consists of a set of values (three in Direct 3D, to be precise), we will use matri-
ces and the matrix math we learned about in Hour 10, “Introduction to 3D Concepts.” As
you might recall from that hour, a number of helper functions are available to help us
with matrix math. Two additional helper functions are also available to perform the func-
tions you will learn about in just a minute: DotProduct() and CrossProduct().

Before we expand our working knowledge of matrices and matrix algebra, and how to
use it on our rigid-body system, we must first clear up one thing. There are, essentially,
two systems used to describe 3D graphics: left-handed and right-handed. These two sys-
tems are shown in Figure 16.4. The arrows in Figure 16.4 indicate positive values; so, in
considering the right-handed coordinate system, you can see that positive z-values appear
to go into the computer screen, which seems intuitive. We’re going to use this system
because it makes sense to do so. Keep in mind that some graphics books might use either
system, and often use the left-handed system, in fact. It is also important to remember
when each system is used because when transforming points for the viewpoint actually
uses the left-handed notation, that fact will have to be taken into account.

Modeling a Complex World—Applying Physics and Object Hierarchies 315

16

NEW TERM

FIGURE 16.4
Left-handed versus
right-handed axes.

Y

X

Z Left Handed System

Y

X

Z

Right Handed System

23 1634xCH16 11/13/99 11:15 AM Page 315

Another important consideration to keep in mind is that positive rotations about any axis
are counterclockwise. Conversely, negative rotations about an axis are clockwise. We can
see what this looks like in Figure 16.5.

316 Hour 16

FIGURE 16.5
Positive rotation in a
right-handed system.

In terms of 3D, you’ve normally defined things in terms of points and vectors. Let’s take
just a minute to make sure you understand the exact definitions of these two concepts:

• Points represent a position in space using a set of x, y, and z values.

• Vectors represent direction and length, and are actually the difference between two
points. They are also usually represented as a set of x, y, and z values.

The Direct3D interface supports vectors (of course), and represents them with the
D3DVECTOR structure. This structure is very simple, as you might remember:

typedef struct _D3DVECTOR {
union {

D3DVALUE x;
D3DVALUE dvX;

};
union {

D3DVALUE y;
D3DVALUE dvY;

};
union {

D3DVALUE z;
D3DVALUE dvZ;

};
} D3DVECTOR, *LPD3DVECTOR;

It is important to note that D3DVECTOR structures can be used to represent either points or
vectors, as you can tell from the unioned members.

Let’s take a look at some basic vector equations that will be important later in this hour.
First, vector addition and subtraction are very straightforward. Adding two vectors, v and
u, looks like this:

u + v = [(ux + vx) (uy + vy) (yz + vz)]

23 1634xCH16 11/13/99 11:15 AM Page 316

Subtracting two vectors, as you might suspect, is also very straightforward:

u - v = [(ux - vx) (uy - vy) (uz - vz)]

There are two types of vector equations that might seem strange at first. These
equations are the dot product and the cross product, which is sometimes called

the vector product. A dot product is an operation on two unit vectors that produces a
value that represents the relationship of those two vectors. That relationship is actually
the cosine of the angle between the two vectors. A dot product is written using a little dot
symbol, and shouldn’t be confused with multiplication, which is usually written with
either no symbol or a small x, but never with a dot. A dot product can be written as

u•v = uxvx + uyvy + uzvz

In simple terms, the dot product is the sum of the x’s product, the y’s product, and the z’s
product of the two vectors. Some additional properties of the dot product are

u•0 = 0

u•v = v•u

The cross product looks like a strange function at first, but it is useful. The cross product
can be written as

uXv = [uyvz-uzvy uzvx-uxvz uxvy-uyvx]

Although this might seem trivial, here are the functions to calculate these two algo-
rithms:

double dDotProduct(D3DVECTOR *u, D3DVECTOR *v)
{

return ((u->x * v->x) + (u->y * v->y) + (u->z * v->z));
}

void CrossProduct(D3DVECTOR *v, D3DVECTOR *v, D3DVECTOR *result)
{

result->x = (u->y * v->z) - (u->z * v->y);
result->y = (u->z * v->x) - (u->x * v->z);
result->z = (u->x * v->y) - (u->y * v->x);

}

For now, just get a good grip on how to calculate these two functions. We’ll use them
shortly as part of our collision detection geometry, as well as in our physics.

There are three conventional ways to represent rotations of an object around axes: matri-
ces, quaternions, and Euler angles. These are summarized as follows:

• Matrices use a set of rows and columns to represent rotations or translations of an
object.

Modeling a Complex World—Applying Physics and Object Hierarchies 317

16

NEW TERM

23 1634xCH16 11/13/99 11:15 AM Page 317

• Quaternions normally use a notation such as [w, v], where w is a scalar, and
v = (x, y, z). The x, y, and z values represent a vector. The scalar value repre-
sents the angle of rotation around the object’s central axis.

• Euler angles normally use a notation such as (θ, χ, φ), where θ is the rotation (in
degrees) about the x-axis, χ is the rotation about the y-axis, and φ is the rotation
about the z-axis.

We’ll discuss how to use matrices and the matrix math you learned in Hour 10 for the
rest of this hour. This type of representation is the easiest to understand, and should be
enough to get you started. You should be able to find a lot of material in recent books
and magazines that discusses performing some of the same algorithms you will learn
shortly, but with other systems, such as quaternions. Many of the basic equations you’ll
learn are the same from representation to representation, and basically the only differ-
ence is in how you compute those equations. It is important to note that Direct3D uses
quaternions to represent rotation in some of its methods, so it might be helpful to take a
look at quaternions at some later date. I’ll leave this as an exercise for later.

318 Hour 16

If you follow the exercise suggestions at the end of this chapter and try to
delve into other computer graphics books or math texts, you will find many
conventions for naming things. It might be helpful to try to follow and learn
the different ways that notions in physics and dynamics are denoted—it will
make things easier to follow. I’ll try to explain some of the popular conven-
tions used for the rest of the hour. Just try to spend a minute or two making
sure you understand what those conventions are.

One last important point you should be aware of is what is called a normal. A
normal to a plane is a line perpendicular to that plane. A normal can be calcu-

lated by computing the cross product of three points in that plane. Given three points—
A, B, and C—you can calculate the normal to the plane that those three points represent.

N = AB X BC.

If the cross product is 0, the points are collinear, and don’t, in fact, define a plane.

Object Interaction
Objects react to each other, and these reactions can be as discrete and finite as having
gravitational (or even magnetic) pull, or as simple as following some simple physics
rules for when they collide. The complexity at which we consider these reactions will
determine how realistic our game will be. The more physical properties of reactions we

NEW TERM

23 1634xCH16 11/13/99 11:15 AM Page 318

simulate in our game, the more calculations must be performed. This can have a direct
impact on the speed at which our game appears to play. If we take into consideration all
the physics involved as objects interact with each other, such as friction, angular momen-
tum, gravity, and so on, we’ll probably spend too much time processing all that informa-
tion. You must find a balance.

Devising algorithms and functions for these physics is an area of great interest in the aca-
demic world, and a very hot area in the game development community. For obvious rea-
sons, researchers are always investigating new ways to determine the physical nature and
functions of force and movement. Also for obvious reasons, game developers are inter-
ested in devising ways to implement those models and observations in games.

What you will find, however, is that there isn’t much to go on for existing models, at
least in a practical sense, for modeling physics in your game. At the very least, you can
probably model such simple physics as gravity and friction. What makes object interac-
tion tougher for you as a programmer is deciding where the balance is, and applying
some of the math involved. Let’s take a look at some of the basics of object interaction.

Collision Detection
Collision detection simply means detecting when a coordinate of any point on
one of two objects is the same as any point on the other. In other words, it is the

detection of when two objects actually touch.

Your first thought might be that this will be a monumental task if we must calculate all
the points for a given object with all the points of any other object. This, of course, won’t
be useful because it is computationally too expensive. Instead, we’ll perform all our col-
lision detection in two steps.

In our first step, we’ll use what’s called a bounding box to get an easy-to-compute idea
of whether our objects even have a chance to collide. To do this, we calculate an imagi-
nary box around our object, and use some simple math to determine whether we have an
intersection with any other box. An example of a bounding box can be seen in Figure
16.6.

Modeling a Complex World—Applying Physics and Object Hierarchies 319

16

FIGURE 16.6
The box bounding an
object.

X

Y

Z

What happens as we rotate our object around different axes? Well, if we simply calculate
our bounding box as a box that surrounds the maximum and minimum x, y, and z values

NEW TERM

23 1634xCH16 11/13/99 11:15 AM Page 319

for an object, we end up with Figure 16.7. This type of bounding box is called an axis-
aligned bounding box (AABB). This means our box expands and shrinks as our object
rotates, and is always aligned with the world axis. Besides, we’ll always have to calcu-
late our bounding box after any rotation of our object.

320 Hour 16

FIGURE 16.7
An axis aligned
bounding box.

X
X

X
Y

X
Z

X
H

Y
X

Y
Y

Y
Z

Y
H

Z
X

Z
Y

Z
Z

Z
H

H
X

H
Y

H
Z

H
H

There is a better way to calculate our bounding box, called an oriented bounding box
(OBB). An OBB is a bounding box that we calculated first in object space before any
rotation. Any time we change our object’s orientation by rotation, we also change the
OBB’s rotation. An example of an OBB that has been rotated to match an object can be
seen in Figure 16.8.

FIGURE 16.8
An oriented bounding
box.

L = (V • V)

So, to see whether two bounding boxes are touching or are intersecting at some point, we
could simply use

BOOL BoxesTouch(D3DRMBOX *box1, D3DRMBOX *box2)
{

BOOL fHaveTouched = FALSE;
if (((box1->min.x <= box2.max.y) &&

(box1->min.y <= box2.max.y) &&
(box1->min.z <= box2->max.z)) ||
((box1->max.x >= box2->min.x) &&
(box1->max.y >= box2->min.y) &&
(box1->max.z >= box2->min.z)))

fHaveTouched = TRUE;
return fHaveTouched;

}

Of course, this only tells us whether our bounding boxes have touched. The reason we’re
using bounding boxes, however, is because it’s relatively quick to test for the likelihood
that two objects have touched. Also, we can even eliminate checking for collisions unless
there’s at least a possibility that two objects have collided.

23 1634xCH16 11/13/99 11:15 AM Page 320

What we could do now, of course, is test for an actual collision. As it turns out, there’s a
simple rule to follow that makes this fairly easy: Two objects are not touching if a plane
separates them that neither object touches. So, to find that plane, we start by examining
all the faces of one of the objects. Each face, of course, exists in a plane. We simply
examine all the faces of one of our objects, and inspect each vertex, or even just the clos-
est vertex, of the possibly colliding object and see whether that vertex touched the plane.

After we’ve iterated through all the faces and haven’t found a separating plane, we have
to look at all the edges in that object. If we combine an edge of one object with a vertex
of another object, we have a possible separating plane that we must look at. When we’ve
examined all the faces and edge-vertex combinations and can’t find a separating plane,
we have found a collision.

At any point in this testing, if we find a plane in which all the vertices of the colliding
object are on the far side of the colliding plane (or derived plane), we’re done and we
don’t have a collision.

So how do we find out whether all the vertices are on the far side of a (possibly) separat-
ing plane? Well, we have to find a normal to the plane first, and we can do that by calcu-
lating the cross product of two vertices on the plane.

An alternative to calculating a box that surrounds your object, and keeping it
object oriented, is to use collision spheres. Collision spheres work in essentially

the same way as bounding boxes, except that you simply calculate and track the center
point of each object and a radius. If the distance between the centers of two objects is
less than the sum of the radii of those two objects, the bounding spheres encapsulating
both objects have collided. You can then continue on as before, by trying to find the
exact point (or face or edge) at which the objects collided. This method has the advan-
tage of being slightly faster, in that you have to track only the center point of an object as
it moves (or changes direction) in world space. The radius of the sphere doesn’t change
as the object moves because it is simply a scalar value representing length.

Object Reactions
After objects collide, it might be helpful to present some sort of simple reaction, such as
a visual animation or a sound to indicate simple touching. This can be taken one step far-
ther, to actually modeling a physical collision with forces and such.

Sound is covered in another hour, so we won’t go into the obvious here. However, it
would be interesting to look at how to model a simple reflection or deflection of two
objects.

Modeling a Complex World—Applying Physics and Object Hierarchies 321

16

NEW TERM

23 1634xCH16 11/13/99 11:15 AM Page 321

First, let’s examine what happens when an object collides with an immovable plane. To
make sure we have two bodies actually colliding (versus going away from each other),
we take the dot product of the colliding object’s velocity vector with the normal to the
collision plane of the collide object. Take a look at Figure 16.9 to see what our collision
looks like. Given this diagram, our dot product is V•N.

322 Hour 16

1 0 0 d
X

0 1 0 d
Y

0 0 1 d
Z

0 0 0 1

Translation Matrix

s
X

0 0 0

0 s
Y

0 0

0 0 s
Z

0

0 0 0 1

Scaling Matrix

cos0 0 sin0 0

0 1 0 0

–sin0 0 cos0 0

0 0 0 1

Y Rotation Matrix

cos0 –sin0 0 0

sin0 cos0 0 0

0 0 1 0

0 0 0 1

Z Rotation Matrix

1 0 0 0

0 cos0 –sin0- -

--

--

--

--

- -

0

0 sin0 cos0 0

0 0 0 1

X Rotation Matrix

FIGURE 16.9
One use of the dot
product.

If this dot product value is less than zero, the two bodies are indeed in the act of collid-
ing, and we must create a reaction vector. To do that, we create two more vectors: the
motion parallel and the tangential to the normal of collision. The new vector, V’, can be
solved for by

Vn= (N•V)N

Vt=V-Vn

V’=Vt -KrVn

23 1634xCH16 11/13/99 11:15 AM Page 322

The normal of collision is actually the normal to the plane. Kr represents the coefficient
of restitution. By setting Kr to 1, you cause a deflection of an object off another object
that results in no loss of force. A value of 0 causes a total loss of force, and the colliding
object simply loses all momentum and appears to stick to the plane.

The coefficient of restitution is the amount of force dissipated in a collision. It
can be imagined as the elasticity of the collision.

Now that we know what happens when an object collides with an immovable plane, let’s
take a look at what happens when two objects, each with its own mass and force, collide
with each other. In Figure 16.10, we can see two objects colliding at some point P.

Modeling a Complex World—Applying Physics and Object Hierarchies 323

16

NEW TERM

FIGURE 16.10
Two objects colliding.

P

A
Va

Vb

n

B

The tricky part is that to model our collision perfectly, we would have to consider the
fact that the two objects would take some time to actually collide. In our simple sce-
nario, however, we don’t want to deal with computing a collision over some very small
quantum of time; we would like to calculate the resulting vectors for the objects immedi-
ately at the point of contact. The resulting force from such an impact is called the
impulse, from Newton’s Law of Restitution for Instantaneous Collision with No Friction,
and implies that we are calculating an instantaneous collision. A few of the algorithms
from that theorem are in Figure 16.11.

FIGURE 16.11
Algorithms for instan-
taneous collision.

VA
2

n= VA
1 +

MA

j

VB
2

n= VB
1 –

MB

j

v AB
1– (1+e) • n

=j

+
M A
1

M B
1

n • n

23 1634xCH16 11/13/99 11:15 AM Page 323

We’re concerned with solving for the resulting vectors for each object, V2
A and V2

B. After
we’ve obtained the impulse and solved for both the resulting vectors, we’ve successfully
bounced our objects off each other. Of course, these algorithms do not take into account
other forces, such as friction, as stated in the earlier discussion.

Adding Collision Detection to Our
Application

Let’s take a look at some basic functions over the next few minutes, which will provide
the basis for our simplified model of real-world physics. Remember that we are, of
course, approximating only some of the physics involved in object interaction. We’re
only looking toward simple object-to-object collision detection and reaction, and we are
using only one force acting on an object: gravity.

Let’s start by creating an object that will hold our mass, momentum, current velocity, and
current angle. This class will also provide a few helper functions to make collision detec-
tion and reaction easy. The interface for this basic object class looks like this:

class CObj
{
public:

CObj* next;
float oneOverM;
CBSphereCollection boundSphereColl;
CObj();
virtual ~CObj();
virtual void set_pitch(float val);
virtual void set_steer(float val);
virtual void set_lift(float val);
virtual D3DMATRIX calc_move(float delt);
virtual void calc_forces();
virtual BOOL find_collisions();
virtual int check_for_collisions(CObj &target);
virtual void react(CObj &target);

D3DVECTOR cur_ang; // current rotational angle
D3DVECTOR vel_ang; // velocity of rotation

D3DVECTOR cur_pos; // current position
D3DVECTOR vel_pos; // current velocity

float lift;
float pitch;
float steer;

};

324 Hour 16

23 1634xCH16 11/13/99 11:15 AM Page 324

We’ll create two objects for testing purposes, CHelicopter and CScene, both of which
derive from our CObj. The helicopter represents a flying helicopter in a virtual city, and
the CScene object represents the visual viewport of the user, who is free to move about
the world. Both classes override the virtual calc_move() function because each object
moves in a slightly different way.

The vertex definition of our main object, a helicopter, is stored in the Direct3D .x file
format. Our helicopter is actually made up of several smaller objects (rotors, cockpit, and
so on), each of which is defined as a vertex mesh. We will use some of the code from the
DirectX 7 SDK to load our .x file, and to enumerate through the vertex mesh. You can
find a copy of the utility code (written by Microsoft) in the D3DIM directory, as well as
in the sample code for this hour.

The sample code, which will suit our purpose for now, defines two C++ classes:
CD3DFile and CD3DFileObject. CD3DFile contains functions for loading .x files and for
parsing them. It also contains the function EnumObjects(). This function, to which we
provide a callback function (like most of DirectX’s enum functions), enables us to iterate
through the object hierarchy.

Defining Object Bounds
We also want a collision sphere–type object to use when we’re calculating collision
detection and reaction. The collision sphere simply holds the center and radius for a par-
ticular object.

class CBoundingSphere
{
public:

CBoundingSphere* last;
void transform_center(D3DVECTOR &pos);
void SetSphere(D3DVECTOR ¢, float rad);
float radius;
D3DVECTOR center;
CBoundingSphere();
CBoundingSphere(D3DVECTOR ¢, float rad);
virtual ~CBoundingSphere();
CBoundingSphere* next;

};

As well, let’s create a collection of collision spheres (CBoundingSphere objects). We’ll
create the collection when we initially create an object, and use it to define, fairly nar-
rowly, whether an object really is colliding. For obvious reasons, just using a root object
around our entire object isn’t very accurate, so we’ll create spheres around our child
objects as well.

Modeling a Complex World—Applying Physics and Object Hierarchies 325

16

23 1634xCH16 11/13/99 11:15 AM Page 325

class CBSphereCollection
{
public:

void transform_centers(D3DVECTOR &pos);
void AddSphere(D3DVECTOR ¢er, float radius);
void BuildCollection(CD3DFile *lpMesh);
CBoundingSphere rootSphere;
int numSpheres;
CBSphereCollection();
virtual ~CBSphereCollection();

protected:
static BOOL CalcFileObjBoundingSphere(CD3DFileObject* pObject,

D3DMATRIX* pmat,
VOID* pContext);

};

We provide such a callback function to the file object representing our object, lpMesh.
BuildCollection() is called with this object, and it, in turn, calls EnumObjects(),
which allows us to look at all the vertices of a particular subobject and calculate our
bounding spheres. We will track a sphere encompassing our entire object hierarchy, and
store that as a root sphere. We’ll also then add a sphere for each triangle in our object
hierarchy. Let’s look at that callback function:

BOOL CBSphereCollection::CalcFileObjBoundingSphere(CD3DFileObject* pObject,
D3DMATRIX* pmat,
VOID* pContext)

{
CBSphereCollection *cbscol = (CBSphereCollection*)pContext;

D3DVECTOR center;
FLOAT radius;

D3DVERTEX* pVertices;
DWORD dwNumVertices;

if(SUCCEEDED(pObject->GetMeshGeometry(&pVertices, &dwNumVertices,
NULL, NULL)))

{
if (dwNumVertices == 0)
{

// return without processing objects without meshes
return FALSE;

}
FLOAT cx= 0.0f;
FLOAT cy= 0.0f;
FLOAT cz= 0.0f;
for(DWORD i=0; i<dwNumVertices; i++)
{

FLOAT x = pVertices[i].x;
FLOAT y = pVertices[i].y;

326 Hour 16

23 1634xCH16 11/13/99 11:15 AM Page 326

FLOAT z = pVertices[i].z;

// Center
cx += x*pmat->_11 + y*pmat->_21 + z*pmat->_31 + pmat->_41;
cy += x*pmat->_12 + y*pmat->_22 + z*pmat->_32 + pmat->_42;
cz += x*pmat->_13 + y*pmat->_23 + z*pmat->_33 + pmat->_43;

}
// Calculate the center
center.x = cx / (FLOAT) dwNumVertices;
center.y = cy / (FLOAT) dwNumVertices;
center.z = cz / (FLOAT) dwNumVertices;
for(i=0; i<dwNumVertices; i++)
{

FLOAT x = pVertices[i].x;
FLOAT y = pVertices[i].y;
FLOAT z = pVertices[i].z;

// Radius
FLOAT mx=(x*pmat->_11 + y*pmat->_21 + z*pmat->_31 + pmat->_41) - center.x;
FLOAT my=(x*pmat->_12 + y*pmat->_22 + z*pmat->_32 + pmat->_42) - center.y;
FLOAT mz=(x*pmat->_13 + y*pmat->_23 + z*pmat->_33 + pmat->_43) - center.z;

// Store the largest r (radius) for any point in the mesh
// as our root sphere
radius = sqrtf(mx*mx + my*my + mz*mz);
if(radius > cbscol->rootSphere.radius)

cbscol->rootSphere.radius = radius;
}

}

cbscol->AddSphere(center, radius);

// Keep enumerating file objects
return FALSE;

}

While calculating the movement for each object, we’ll also be calculating the downward
force of gravity, if the global flag g_UseGravity is set to TRUE. To our basic CObj, we’ll
add a helper function, calc_forces(), which we’ll use to calculate any external forces
on an object, aside from its own velocity. For now, it’s just gravity, so

void CObj::calc_forces()
{

Modeling a Complex World—Applying Physics and Object Hierarchies 327

16

23 1634xCH16 11/13/99 11:15 AM Page 327

// if we’re using gravity in our world,
// calculate its effects based on our mass
if (g_UseGravity && oneOverM != 0)
{

vel_pos.x += (g_Gravity.x / oneOverM);
vel_pos.y += (g_Gravity.y / oneOverM);
vel_pos.z += (g_Gravity.z / oneOverM);

}
}

Testing for Collisions
As time elapses in the game, each object within our game will have its calc_move()
function called. This function will then, in turn, call calc_forces(), and move the entire
object based on its current velocity. After we move the object, we can simply perform a
check, on an object-by-object basis, to see whether we’ve hit or bumped anything:

int CBSphereCollection::touches(CBSphereCollection &sphereCollection)
{

// first, check the other object’s root sphere against ours...
D3DVECTOR distance;
distance = sphereCollection.rootSphere.center - rootSphere.center;
if (Magnitude(distance) >

(sphereCollection.rootSphere.radius + rootSphere.radius))
{

// there’s no chance for collision, bounding spheres don’t touch
return 0;

} // ok, let’s iterate through each collection..

CBoundingSphere *mine = rootSphere.next;
CBoundingSphere *theirs = sphereCollection.rootSphere.next;
for (;mine;mine=mine->next)
{

for (;theirs;theirs=theirs->next)
{

if (mine->touches(theirs))
{

// we’ve touched
return 1;

}
}

}
return 0;

}

Our touches() function for the individual sphere looks much the same:

BOOL CBoundingSphere::touches(CBoundingSphere *other)
{

328 Hour 16

23 1634xCH16 11/13/99 11:15 AM Page 328

D3DVECTOR distance;
distance = other->center - center;
if (Magnitude(distance) <= (other->radius + radius))
{

// there’s no chance for collision, bounding spheres don’t touch
return TRUE;

}
return FALSE;

}

We return an int from the first function instead of a BOOL because we might later want to
provide more information about how the objects are colliding. The latter function just
tells us whether two individual spheres are colliding. We quit from the first function as
soon as we get a collision, and at that point, we’ll have to decide how to react.

Animating Reaction Vectors
Collision reaction can be quite complicated and mathematically intensive. If you’re
implementing a flight simulator for testing operational flight programs or for accident
investigation, then you should dig deep into vector mechanics. Fortunately, games can be
more forgiving, that is, it is okay to fake it. Here’s a simple example of that:

void CPObject::ResolveCollision(CPObject &other, CPPlane &plane)
{

float VdotN;
D3DVECTOR Vn,Vt;
// Solve for Vn
VdotN = D3DRMVectorDotProduct(&plane.vNormal, &other.vVelocity);
D3DRMVectorScale(&plane.vNormal, VdotN, &Vn);
// Solve for Vt
D3DRMVectorSubtract(&other->vVelocity, Vn, &Vt);
// Scale Vn by Elasticity Coefficient
D3DRMVectorScale(&Vn, &Vn, fKr); // fKr is our coefficient of restitution
// Calculate Vt - KtVn
D3DRMVectorSubtract(vVelocity, &Vt, &Vn);

}

Note that although we have our own functions for calculating the vector arithmetic, we
use the Direct3D helper functions. There are actually quite a number of helper functions
to support vector arithmetic.

We’re performing a very simple reflection collision here. We can vary the amount of
force absorbed in the collision by varying our fKr variable, but that won’t go far in mod-
eling real-world physics.

Modeling a Complex World—Applying Physics and Object Hierarchies 329

16

23 1634xCH16 11/13/99 11:15 AM Page 329

Summary
In this hour, you learned about object hierarchies and how to use matrices, combined
with those hierarchies, to apply object transformations to complex objects. You learned
about kinematics and inverse kinematics, and how to calculate object orientations by
using simple algorithms.

You also learned about collision detection and reaction, and how to model physical
behaviors on objects while considering forces and dynamics. Armed with this knowl-
edge, you are able to apply a physical model to your game world to simulate real-world
physics.

Q&A
Q You said that having fewer than six degrees of freedom can decrease the num-

ber of calculations that must be performed. Won’t I always want six degrees
of freedom?

A For some of the objects you are modeling, perhaps. Some objects may have much
less. Consider a person walking on the ground. If that person never gains the abil-
ity to fly, he will never have any translation freedom on the y-axis; therefore, he
will have fewer than six degrees, for sure.

Q When performing tests for object collision, is it necessary to test all objects
against each other?

A Not necessarily. Although I didn’t cover it (there are only so many minutes in an
hour), you can actually perform some additional calculations on your objects after
every quantum of movement that will help narrow your search. Keeping track of
the distances between objects will perhaps help you narrow it down, although you
might have to perform some square roots, which might be costly. Investigate the
many possible algorithms for collision detection, many of which use space parti-
tioning.

Q Do I really have to use all the physics calculations discussed today? There
seems to be an awful lot of calculations involved. Doesn’t Direct3D take care
of any of the details?

A Of course you don’t have to use all the physics calculations we discussed. You only
have to provide those physics and solutions to model more than just basic object
movement. Direct3D provides many nonmember functions to help you calculate
most of the matrix math. This will allow you to at least move and scale your
objects. You’ll have to use the trigonometry and calculus functions to model real-
world behaviors only when your game design requires it.

330 Hour 16

23 1634xCH16 11/13/99 11:15 AM Page 330

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. Given that vector a = [7 3 9] and vector b = [8 2 4], calculate the dot product

and cross product for the two vectors.

2. What are the difference between kinematics, kinetics, and inverse kinematics?

3. What is the difference between an AABB and an OBB?

Exercises
1. Take a look at the SIGGRAPH proceedings; they deal with computer graphics and

animations and are very informative. You might also want to check out some books
on physics, geometry, and calculus to brush up or improve your knowledge of the
math involved in modeling 3D animations.

2. Take a look at quaternions, and try to apply the physics and math you’ve just
learned using them. Rewrite some of the functions provided here to use quater-
nions instead of the matrices we’ve used.

3. The sample code doesn’t provide true collision detection; it stops just short by
using collision spheres. Add the code necessary to find the faces (planes) of each
object, and implement the algorithm described earlier in the hour.

Modeling a Complex World—Applying Physics and Object Hierarchies 331

16

23 1634xCH16 11/13/99 11:15 AM Page 331

23 1634xCH16 11/13/99 11:15 AM Page 332

HOUR 17
Introducing
DirectInput—Getting
User Input

DirectInput is the component of DirectX that is used to read input devices
such as the keyboard, the mouse, joysticks, and flight yokes. Unlike the
message-based approach to handling the keyboard and mouse in traditional
Win32 programming, DirectInput provides a high-performance means of
obtaining input from the keyboard and mouse, which results in much better
response. Additionally, DirectInput is extensible enough to support very
advanced input devices such as flight yokes and joysticks with multiple
axes.

DirectInput is structured as a suite of COM objects, which is similar to other
parts of DirectX that you’ve already learned about. This hour introduces you
to DirectInput and shows you how to put it to work handling user input from
the keyboard, the mouse, and joysticks.

24 1634xCH17 11/13/99 11:16 AM Page 333

In this hour, you will learn

� What DirectInput has to offer
� About the main objects used in DirectInput
� How to set up DirectInput to read from input devices
� How to read user input from the keyboard
� How to read user input from the mouse
� How to read user input from joysticks

DirectInput Basics
Prior to DirectX, all user input in Windows was retrieved via the Win32 API. Although
Win32 offers full support for reading input from the keyboard and mouse, and limited
support for joysticks, it proved to be less than adequate for the high-performance input
needs of gaming. Let’s face it, even a slight lag between moving the joystick left and
your character in a game actually moving left could be the difference between life and
death. Microsoft saw the need to provide a low-latency alternative to user input with
DirectX to go along with the high-performance graphics, sound, and networking features
they had already developed.

DirectInput was created for precisely this purpose: to provide a means of obtaining user
input from devices with an extremely low latency. Just in case you’ve forgotten what
latency means, in this case it refers to the delay between interacting with an input device
(moving the joystick left) and the game responding to the interaction (moving your char-
acter left). Obviously, a lower latency results in games feeling much more responsive,
which is critical in a time where gamers have come to expect hair-trigger responsiveness
in games.

334 Hour 17

In case you’re curious about how DirectInput can offer significantly increased
performance over the Win32 approach to user input, let me assure you that
nothing magical is involved. DirectInput simply skirts the layered approach of
the Win32 API and communicates directly with input device drivers.

DirectInput isn’t all about responsiveness, however. Another shortcoming of the Win32
API is that it has limited support for joysticks and no support for more advanced input
devices such as flight yokes, steering wheels, joysticks with more than two axes, or

24 1634xCH17 11/13/99 11:16 AM Page 334

force-feedback joysticks. DirectInput addresses this shortcoming by offering an extensi-
ble interface that is designed to support advanced input devices currently available, along
with those that have yet to be dreamed up. So, when you finish building that virtual real-
ity Twister mat in your garage, you can rest easy knowing that game programmers will
be able to support it via DirectInput.

Inside DirectInput
I mentioned in the introduction to this lesson that DirectInput is structured as a set of
COM objects, which by now should come as no surprise to you. Following are the COM
objects that comprise DirectInput:

� DirectInput
� DirectInputDevice
� DirectInputEffect

The DirectInput object is at the heart of DirectInput and serves as the primary interface to
DirectInput. More importantly, the DirectInput object acts as an input device manager that
enables you to enumerate and access devices for use with DirectInput. Speaking of input
devices, the DirectInputDevice object represents an input device within DirectInput. So, if
a user with a couple of extra arms is playing a game that uses the keyboard, the mouse, a
joystick, and a steering wheel, four DirectInputDevice objects would be at work behind
the scenes.

The last DirectInput object is DirectInputEffect, which represents a force-feed-
back effect on an input device that supports force feedback. Force feedback is a

tactile response to something in a game that typically involves a set of motors mounted
inside a special joystick. An example of a force feedback effect is a jarring blow from an
opponent in a fighting game, which involves the joystick shaking as you receive the hit.
Another example is the tightening of steering in a force-feedback steering wheel as you
round a corner in a driving game. Microsoft’s SideWinder Force Feedback Pro joystick
was one of the first joysticks to support force feedback. You learn about this and other
force-feedback input devices in the next hour.

Because force feedback is a specialized and somewhat complex user input topic, I
wanted to give it an hour of its own. So, you learn about force feedback in the next hour.
The remainder of this hour is devoted to using DirectInput to handle input from the key-
board, mouse, and traditional joysticks.

Introducing DirectInput—Getting User Input 335

17

NEW TERM

24 1634xCH17 11/13/99 11:16 AM Page 335

The DirectInput Object
The DirectInput object forms the basis of DirectInput and provides a means of detecting
and accessing available input devices. You will typically create a DirectInput object and
then use it to create DirectInputDevice objects. Most of the real work of using DirectInput
involves the DirectInputDevice object, which you learn about in a moment. However, you
must first go through the DirectInput object because it is responsible for managing input
devices.

You create a DirectInput object by calling the global DirectInputCreate() function,
which returns a pointer to an IDirectInput interface:

HRESULT WINAPI DirectInputCreate(HINSTANCE hinst, DWORD dwVersion,
LPDIRECTINPUT* lplpDirectInput, LPUNKNOWN punkOuter);

The first parameter to DirectInputCreate(), hInst, is an instance handle for the appli-
cation or DLL that is creating the DirectInput object. The second parameter, dwVersion,
is the desired version number for DirectInput, which assists in backward compatibility.
You will typically pass DIRECTINPUT_VERSION as this parameter, as opposed to a specific
version number. The third parameter, lplpDirectInput, is a pointer to a DirectInput
object pointer. This parameter is set to the DirectInput object pointer after successful cre-
ation and serves as the basis for performing future DirectInput operations, such as enu-
merating and creating input devices. The final parameter to DirectInputCreate() is
pUnkOuter, which might be used to support COM aggregation, but is typically set to
NULL. If the DirectInput object is successfully created, DirectInputCreate() will return
DI_OK.

After successfully creating a DirectInput object, you can start accessing input devices.
DirectInput objects are manipulated through the IDirectInput COM interface. The
IDirectInput interface methods are used to get and set DirectInput object attributes, as
well as to create DirectInputDevice objects. Following are some of the more commonly
used methods in the IDirectInput interface, some of which you will use later in the les-
son when you put DirectInput to work in a real application:

� Initialize()

� CreateDevice()

� EnumDevices()

� GetDeviceStatus()

� RunControlPanel()

� Release()

336 Hour 17

24 1634xCH17 11/13/99 11:16 AM Page 336

The Initialize() method is called to initialize a DirectInput object. You will probably
never need to call this method directly because it is called by the DirectInputCreate()
function when you first create a DirectInput object.

Perhaps the most commonly used method in the IDirectInput interface is
CreateDevice(), which is called to create a DirectInputDevice object based on an
attached physical input device. Although it is generally safe to assume that all users have
a keyboard and mouse, it isn’t a good idea to make the same assumption regarding joy-
sticks and other types of optional input devices. For this reason, you can’t just call
CreateDevice() to create joystick device objects as you do keyboard and mouse devices
objects. Instead, you must first call EnumDevices() to determine which devices are
attached to the system. When you know what optional devices are available, if any, you
then create DirectInputDevice objects for them using CreateDevice().

An attached device is a device that is installed and physically connected to the
system.

Introducing DirectInput—Getting User Input 337

17

Keep in mind that it is possible for a user to have multiple joysticks or none
at all. Also, understand that I’m using the term “joystick” loosely in this dis-
cussion. You will use the same enumeration approach to find all input devices
beyond the standard keyboard and mouse, including joysticks, steering
wheels, flight yokes, and so on.

You might want to query for a specific input device at some point in a game or multi-
media application. You can call the GetDeviceStatus() method to determine whether a
specific device is attached to the system. You might also want to give the user the option
to modify the control panel settings for a device, or possibly even install new devices.
The RunControlPanel() method runs the Windows Control Panel, which allows the user
to alter configuration settings for input devices or install new devices.

The last method mentioned in the IDirectInput interface is Release(). I hope you have
a hunch as to the purpose of this method. Give up? OK, the Release() method is called
to release the DirectInput object. This is an important cleanup operation you must per-
form when you’re finished using DirectInput. You’ll also want to unacquire and release
any devices that you’ve created using the DirectInput object. You learn about the meth-
ods used to do this in the next section.

NEW TERM

24 1634xCH17 11/13/99 11:16 AM Page 337

The DirectInputDevice Object
The DirectInputDevice object represents a physical input device that is attached to the
system. You create DirectInputDevice objects by calling the CreateDevice() method on
a DirectInput object. DirectInputDevice objects adhere to the IDirectInputDevice COM
interface, which contains a host of methods for manipulating input devices. Following
are the most commonly used methods in the IDirectInputDevice interface:

� Initialize()

� SetDataFormat()

� SetCooperativeLevel()

� Acquire()

� GetDeviceState()

� GetDeviceData()

� GetCapabilities()

� GetProperty()

� SetProperty()

� SetEventNotification()

� Unacquire()

� Release()

The Initialize() method is called to initialize a DirectInputDevice object. Similar to its
counterpart in the IDirectInput interface, this method is rarely called directly because it
is called by the CreateDevice() method when you first create a DirectInputDevice object.

After creating a DirectInputDevice object, the next step is to set its data format, which is
accomplished with a call to the SetDataFormat() method. An application can establish a
custom data format, or it can use one of the standard DirectInput device data formats:
c_dfDIKeyboard, c_dfDIMouse, c_dfDIJoystick, or c_dfDIJoystick2. With the data
format established, you then set the behavior of the device by calling
SetCooperativeLevel(). SetCooperativeLevel() determines to what degree an appli-
cation allows an input device to be shared with other applications.

The last step in preparing a DirectInputDevice to receive data is acquiring the device by
calling the Acquire() method. After a device is acquired, you can call the
GetDeviceState() and GetDeviceData() methods to get information about how the user
has interacted with the device. Which method you use is determined by whether you
want the input to be buffered or unbuffered. You learn more about these two approaches
to input when you learn about handling keyboard input later in the hour.

338 Hour 17

24 1634xCH17 11/13/99 11:16 AM Page 338

You can retrieve the capabilities of an input device by calling the GetCapabilities()
method. You can also get and set individual device properties by calling the
GetProperty() and SetProperty() methods, respectively. Another interesting method is
SetEventNotification(), which is used to establish an event that is to be set when the
device state changes. This method is useful when receiving buffered input from a device,
such as the mouse.

The last two methods mentioned are Unacquire() and Release(), which are both used
to clean up a DirectInputDevice object. It is important to call Unacquire() and then
Release() for every DirectInput device that you’ve acquired in a given DirectInput ses-
sion. This device cleanup should always precede the call to Release() on the DirectInput
object.

DirectInput Housekeeping
You’ve now gotten a glimpse at the objects and methods used with DirectInput, but
you’ve yet to see them come together in real code. The remainder of this hour shows you
how to put DirectInput to work handling input from the keyboard, mouse, and traditional
joysticks. Before you get into the specifics of each device, however, let’s go over some
general DirectInput housekeeping code that will apply to all devices.

Starting Up DirectInput
First, let’s take a look at some code that shows how to use the DirectInputCreate()
function to create a DirectInput object:

LPDIRECTINPUT lpDI;

if (DirectInputCreate(hinst, DIRECTINPUT_VERSION, &lpDI, NULL) != DI_OK)
return FALSE;

This code is pretty straightforward; it calls the DirectInputCreate() function to create a
DirectInput object. This object can then be used to enumerate and create input devices.
The steps to creating and using different input devices are similar regardless of the
device. Following are the general steps involved in creating and initializing any
DirectInput device:

1. Enumerate the attached devices with a call to the EnumDevices() method on the
DirectInput object.

2. Create the DirectInputDevice object with a call to the CreateDevice() method on
the DirectInput object.

3. Set the device’s data format with a call to the SetDataFormat() method.

Introducing DirectInput—Getting User Input 339

17

24 1634xCH17 11/13/99 11:16 AM Page 339

4. Set the device’s behavior with a call to the SetCooperativeLevel() method.

5. Acquire the device with a call to the Acquire() method.

For standard devices such as the keyboard and mouse, you can skip the first step. This is
because of the fact that there aren’t likely to be any systems out there with more than one
keyboard or mouse. Besides, anyone that is enough of a power user to need more than
one keyboard or mouse is bound to figure out a way to make them work with your game!

You’ll work through the specific code for each of these steps on different devices in a
moment. For now, just think in terms of the logical steps required to get your hands on a
device.

Cleaning Up DirectInput
Just as there is an established series of events that must take place in order to initialize
DirectInput and access devices, there is also a complementary cleanup process. You’ll be
glad to know that cleaning up after DirectInput is actually far easier than initializing it.
Following are the steps required to clean up a DirectInput session:

1. Unacquire all previously acquired devices by calling the Unacquire() method on
each.

2. Release all previously created devices by calling the Release() method on each.

3. Release the DirectInput object by calling the Release() method on it.

Following is code to perform these steps and clean up after DirectInput:

if (lpDIDevice)
{

lpDIDevice->Unacquire();
lpDIDevice->Release();
lpDIDevice = NULL;

}
SafeRelease(lpDI);

This code assumes that the DirectInput and DirectInputDevice object pointers are named
lpDI and lpDIDevice, respectively. Of course, you might have multiple device pointers
active in a given game, in which case you would be responsible for unacquiring and
releasing all of them. If you recall, the SafeRelease() macro has been used throughout
the book to safely release a DirectX object and null its pointer:

#define SafeRelease(x) if (x) { x->Release(); x=NULL;}

Many of the methods used to initialize and manipulate DirectInput devices are capable of
failing; in which case they return a value other than DI_OK. It’s important to clean up any
DirectInput objects that you’ve created or acquired when a failure occurs. For example, if

340 Hour 17

24 1634xCH17 11/13/99 11:16 AM Page 340

you successfully create a device but then fail to acquire it, you must release the device if
you don’t plan to immediately try to acquire it again. I don’t always show extensive
error-handling code throughout the hour in order to keep the code easier to follow, but
keep in mind that it is important to always clean up after DirectInput, even when some-
thing doesn’t go as planned.

Handling Keyboard Input
Handling keyboard input is relatively straightforward using DirectInput. Because the
keyboard is a standard device, you don’t have to hassle with enumerating the devices;
you can just assume that there is one system keyboard. Following is code to create a
keyboard device using the CreateDevice() method on a DirectInput object:

LPDIRECTINPUTDEVICE pKeyboard;
HRESULT hr;
hr = lpDI->CreateDevice(GUID_SysKeyboard, &pKeyboard, NULL);

The first parameter to this method is the global identifier of the device to be created. In
the case of the system keyboard, you can use the predefined GUID_SysKeyboard global
identifier. The second parameter is a pointer to a DirectInputDevice pointer, which is
filled in with the newly created device pointer. The last parameter is used to support
COM aggregation, but is typically set to NULL. If the DirectInputDevice object is success-
fully created, CreateDevice() will return DI_OK.

Now that you’ve created a keyboard device, you’re ready to set the data format for the
device. Fortunately, because the keyboard is a standard device, there is a predefined
global variable, c_dfDIKeyboard, that specifies the data format for the keyboard.
Following is code to set the data format for the keyboard device:

hr = pKeyboard->SetDataFormat(&c_dfDIKeyboard);

With the data format established, you’re ready to set the keyboard behavior with a call to
SetCooperativeLevel(). It’s important to point out that DirectInput doesn’t allow
exclusive access to the keyboard, which probably wouldn’t be a good idea even if it did.
So, you should always set the keyboard’s cooperative level to non-exclusive, as the fol-
lowing code demonstrates:

hr = pKeyboard->SetCooperativeLevel(hwnd, DISCL_FOREGROUND |
DISCL_NONEXCLUSIVE);

Notice that a window handle is passed as the first parameter to this method. This is neces-
sary because the cooperative level establishes how devices are shared among applications,
and the application window is the basis for this sharing. So, be sure to pass a handle to the
main application window as the first parameter to SetCooperativeLevel().

Introducing DirectInput—Getting User Input 341

17

24 1634xCH17 11/13/99 11:16 AM Page 341

If you recall from the earlier discussion of starting up a DirectInput device, the only re-
maining step for preparing the keyboard is to acquire it. Following is code that acquires
the keyboard:

pKeyboard->Acquire();

Nothing too complicated there! You’re now ready to begin handling keyboard input,
which I’m sure you’re more than ready to do. Before we get into the code of inputting
data from the keyboard, let’s establish the ground rules for keyboard input handling.

It’s important to understand that the keyboard provides absolute information. Unlike the
mouse, which provides relative information about its movement, the keyboard always
tells you exactly what is going on with its state. To better understand this, think of the
keys on your keyboard as a big set of Boolean values. At any given moment, some keys
might be pressed (on) and some keys might not (off). The key point is that you can
always ascertain the exact state of the keyboard at any given time. The mouse, on the
other hand, provides you with relative information such as how far it was moved in a
given direction. For this reason, you’ll handle mouse input a little differently later in the
lesson.

Getting back to the keyboard—because it provides you with absolute input information,
it’s sufficient for you to just peek at its state to handle input from it. You do this by call-
ing the GetDeviceState() method. Following is code to read the state of the keyboard:

char buffer[256];
hr = pKeyboard->GetDeviceState(sizeof(buffer),(LPVOID)&buffer);

A buffer of 256 characters is used as the storage medium for the state of the keyboard.
The GetDeviceState() method fills the buffer with the current state of the keyboard. As
you might be thinking, this buffer isn’t of much use unless you can extract state informa-
tion about specific keys. Fortunately, DirectInput provides defined key constants that
specify the index of each key in the keyboard state array. For each key in the keyboard
state array, the most significant bit reflects whether the key is pushed or not. You can eas-
ily check the bit by performing a bitwise AND on the key value with the hexadecimal
value 0x80. This task is made easier with a simple macro:

#define KEYDOWN(buf, key) (buf[key] & 0x80)

Following is an example of using this macro to determine whether the user has pressed
the left or right arrow keys:

if (KEYDOWN(buffer, DIK_LEFT))
// move left

if (KEYDOWN(buffer, DIK_RIGHT))
// move right

342 Hour 17

24 1634xCH17 11/13/99 11:16 AM Page 342

Table 17.1 lists some of the most commonly used DirectInput key constants for gaming.

TABLE 17.1 Commonly Used DirectInput Key Constants

Key Constant Key Represented

DIK_UP Up Arrow

DIK_DOWN Down Arrow

DIK_LEFT Left Arrow

DIK_RIGHT Right Arrow

DIK_RETURN Enter

DIK_TAB Tab

DIK_LSHIFT Left Shift

DIK_RSHIFT Right Shift

DIK_LCONTROL Left Control

DIK_RCONTROL Right Control

DIK_SPACE Space Bar

DIK_INSERT Insert

DIK_DELETE Delete

DIK_HOME Home

DIK_END End

DIK_PRIOR Page Up

DIK_NEXT Page Down

DIK_ESCAPE Escape

All the DirectInput keyboard constants are defined in the DirectInput header file,
DInput.h. Refer to this file for information on other key constants.

As you learned earlier, cleaning up after a DirectInput device simply involves unacquir-
ing and then releasing the device. Following is code to perform this task for the key-
board:

pKeyboard->Unacquire();
pKeyboard->Release();
pKeyboard = NULL;

Keep in mind that you must also release the DirectInput object after cleaning up the
device if you’re finished with the DirectInput session.

Introducing DirectInput—Getting User Input 343

17

24 1634xCH17 11/13/99 11:16 AM Page 343

Handling Mouse Input
Similar to the keyboard, the mouse is a standard device that is expected to be available
on all systems. Consequently, it is safe to assume that there is a single system mouse,
and forgo enumerating mouse devices. Following is code to create a mouse device using
the CreateDevice() method on a DirectInput object:

LPDIRECTINPUTDEVICE pMouse;
HRESULT hr;
hr = lpDI->CreateDevice(GUID_SysMouse, &pMouse, NULL);

Notice that the predefined GUID_SysMouse global identifier is used to specify the system
mouse as the device of choice. The second parameter is a pointer to a DirectInputDevice
pointer, which is filled in with the newly created mouse device pointer.

Similar to the keyboard, there is a predefined global variable, c_dfDIMouse, that specifies
the data format for the mouse. Following is code to set the data format for the mouse
device:

hr = pMouse->SetDataFormat(&c_dfDIMouse);

With the data format established, you’re ready to set the mouse behavior with a call to
SetCooperativeLevel(). Unlike the keyboard, you can set the mouse’s cooperative level
to exclusive, at least as long as the application is in the foreground. The following code
demonstrates how to set the mouse’s cooperative level:

hr = pMouse->SetCooperativeLevel(hwnd, DISCL_FOREGROUND |
DISCL_EXCLUSIVE);

Again, it is necessary to pass the application’s main window handle as the first parameter
to this method.

If you recall from the earlier keyboard discussion, I mentioned that it was necessary to
buffer mouse input because it provides relative input information. It’s now time to
explore exactly how this buffering is accomplished. Buffered input involves establishing
a memory buffer that receives mouse events as they are generated. You then extract the

344 Hour 17

The Hour 17 sample application included on the CD-ROM demonstrates how
to add DirectInput keyboard support to a real application. The Hour 17
example is the cityscape application that you developed earlier in the book
with DirectInput keyboard support added. The application was using tradi-
tional keyboard messaging to allow the user to move left and right using
the arrow keys.

24 1634xCH17 11/13/99 11:16 AM Page 344

input information from the buffer to handle the specific mouse event. Following is code
that creates an event and associates it with the mouse device:

hevtMouse = CreateEvent(0, 0, 0, 0);
hr = pMouse->SetEventNotification(hevtMouse);

The Win32 CreateEvent() function creates an event that is capable of being signaled. In
this case, the signaling is established by passing the event into the
SetEventNotification() method. This results in the event being signaled any time new
input data is available for the mouse. This input data must be stored somewhere, which is
where the buffer comes into play.

Every input device has a buffer that can be used to store buffered input data. Before you
can use an input device’s buffer, however, you must set its size. This is accomplished by
setting the DIPROP_BUFFERSIZE property of the device. To set this property, you must first
fill out a DIPROPDWORD header structure. The following code demonstrates acceptable val-
ues for this structure:

DIPROPDWORD dipdw =
{

{
sizeof(DIPROPDWORD),
sizeof(DIPROPHEADER),
0,
DIPH_DEVICE,

},
32

};

The only significant value of this structure is the last one, 32, which sets the number of
items capable of being stored in the buffer. You could certainly make the buffer huge and
reduce the chances of it overflowing, but in practice this can result in unwanted lag with
the mouse responsiveness. A setting of 32 appears to be a reasonable middle ground. To
actually set the buffer size, you call the SetProperty() method and pass in the appropri-
ate value, as the following code shows:

hr = pMouse->SetProperty(DIPROP_BUFFERSIZE, &dipdw.diph);

Introducing DirectInput—Getting User Input 345

17

The size of the buffer is measured in items of data for the particular device,
not in bytes.

24 1634xCH17 11/13/99 11:16 AM Page 345

Now you’re ready to acquire the mouse and get down to business. Acquiring the mouse
is no different than acquiring the keyboard, as the following code demonstrates:

pMouse->Acquire();

The last step in handling mouse input is actually retrieving mouse data. You have two
options here:

1. Wait for Windows to notify you of mouse events, and then retrieve mouse data.

2. Poll for mouse data in the main game loop.

Your selection of one of these options is determined by the role of the mouse in your
particular game. In general, games that wait on the mouse before doing anything will use
the first approach. At the other end of the spectrum are high-speed games where things
are taking place independent of the mouse, which require the latter approach. So, if you
were creating a 3D Solitaire card game, you’d probably go with the first approach. On
the other hand, if you were creating a Virtual Death Match Wrestling game, you’d need
to poll for mouse data.

I’m going to focus on polling for mouse data because the vast majority of games will use
that approach. Keep in mind that all the polling code you’re about to see must be placed
in the main game loop of your game. The first step to polling for mouse data involves
creating a DIDEVICEOBJECTDATA structure that will be used to hold each piece of mouse
data as it arrives:

DIDEVICEOBJECTDATA data;
memset(&data, 0, sizeof(DIDEVICEOBJECTDATA));

The next step is to create a loop that iterates through all the available mouse data that has
accumulated in the buffer (see Listing 17.1).

LISTING 17.1 A Loop That Iterates Through Available Mouse Input Data

1: BOOL bDone = FALSE;
2: DWORD dwNumElements = 1;
3: int iDX = 0, iDY = 0;
4: BOOL buttonDown[2];
5:
6: while (!bDone)
7: {
8: // Obtain input data from the mouse
9: if (pMouse->GetDeviceData(sizeof(DIDEVICEOBJECTDATA), &data,
10: &dwNumElements, 0) == DIERR_INPUTLOST)
11: {
12: // Reacquire the mouse and try again
13: if (pMouse->Acquire() == DI_OK)

346 Hour 17

24 1634xCH17 11/13/99 11:16 AM Page 346

14: hr = pMouse->GetDeviceData(sizeof(DIDEVICEOBJECTDATA), &data,
15: &dwNumElements, 0);
16: }
17:
18: // Respond to the mouse input
19: switch(data.dwOfs)
20: {
21: case DIMOFS_X:
22: iDX += data.dwData;
23: break;
24:
25: case DIMOFS_Y:
26: iDY += data.dwData;
27: break;
28:
29: case DIMOFS_BUTTON0:
30: if (data.dwData & 0x80)
31: buttonDown[0] = TRUE;
32: else
33: buttonDown[0] = FALSE;
34: break;
35:
36: case DIMOFS_BUTTON1:
37: if (data.dwData & 0x80)
38: buttonDown[1] = TRUE;
39: else
40: buttonDown[1] = FALSE;
41: break;
42: }
43:
44: if (dwNumElements == 0)
45: bDone = TRUE;
46: }

This code demonstrates how to extract mouse data from the buffer. It’s important to
understand that you aren’t guaranteed to get buffer data in any particular order, which is
why it is necessary to use a switch statement to determine the data type. The
GetDeviceData() method is called to retrieve a single element of mouse data. If this
method fails, a single attempt is made to reacquire the mouse and try again. The type of
the data is then determined, which can be an X or Y mouse movement or a mouse button
press. The iDX and iDY variables are used to store the relative change in mouse position
in the X and Y directions. The buttonDown array keeps track of the state of the buttons
on a two-button mouse. You would probably want to make all these variables global in
the context of a real game.

Introducing DirectInput—Getting User Input 347

17

24 1634xCH17 11/13/99 11:16 AM Page 347

Handling Joystick Input
The final topic in this hour is handling joystick input. You’ve come a long way in learn-
ing how to use DirectInput, so I think you’ll find that working with the joystick isn’t too
difficult. The main difference in working with joysticks is that you must enumerate the
joystick devices to determine whether a joystick is attached. The EnumDevices() method
of the IDirectInput interface accomplishes this task:

HRESULT EnumDevices(DWORD dwDevType, LPDIENUMCALLBACK lpCallback,
LPVOID pvRef, DWORD dwFlags);

The first parameter specifies the device type to be enumerated, which in this case should
be set to DIDEVTYPE_JOYSTICK. The second parameter is a pointer to a callback function
that will be called for each device enumerated. You will have to create this function and
pass a pointer to it as this parameter; more on this in a moment. The third parameter to
EnumDevices() is a 32-bit application-specific parameter that allows you to pass any
information that you want accessible from the callback function. You will usually pass a
pointer to the DirectInput object as this parameter. The last parameter to EnumDevices()
is a flag that indicates the scope of the enumeration. Table 17.2 contains a list of these
flags along with their usage.

TABLE 17.2 Flags Used to Indicate the Scope of Enumerated Devices

Flag Devices Enumerated

DIEDFL_ALLDEVICES All installed devices (default)

DIEDFL_ATTACHEDONLY Only attached and installed devices

DIEDFL_FORCEFEEDBACK Only force feedback devices

DIEDFL_INCLUDEALIASES Devices that are aliases for other devices

DIEDFL_INCLUDEPHANTOMS Phantom (placeholder) devices

You can combine these flags to enumerate different groups of devices. For example,
combining DIEDFL_ATTACHEDONLY and DIEDFL_FORCEFEEDBACK will enumerate only
attached devices that support force feedback. To enumerate standard joysticks, you
should just use the DIEDFL_ATTACHEDONLY flag. Following is an example of a call to
EnumDevices() that enumerates standard joysticks:

lpDI->EnumDevices(DIDEVTYPE_JOYSTICK, EnumJoystickProc, pdi,
DIEDFL_ATTACHEDONLY);

Of course, this call won’t result in anything useful until you write the
EnumJoystickProc() callback function. Listing 17.2 contains a suitable callback func-
tion that creates a joystick device based on the first attached joystick that is enumerated.

348 Hour 17

24 1634xCH17 11/13/99 11:16 AM Page 348

LISTING 17.2 The EnumJoystickProc() Callback Function that Is Called to
Enumerate Joysticks

1: BOOL FAR PASCAL EnumJoystickProc(LPCDIDEVICEINSTANCE pdinst, LPVOID pvRef)
2: {
3: LPDIRECTINPUT pdi = pvRef;
4:
5: // Create the joystick device
6: if (pdi->CreateDevice(&pdinst->guidInstance, &pJoystick,

➥ NULL) != DI_OK)
7: return DIENUM_CONTINUE;
8:
9: // Obtain an IDirectInput2 interface for the device
10: if (pJoystick->QueryInterface(IID_IDirectInputDevice2,
11: (LPVOID*)&pJoystick) != DI_OK)
12: {
13: pJoystick->Release();
14: return DIENUM_CONTINUE;
15: }
16:
17: // Set the joystick data format
18: if (pJoystick->SetDataFormat(&c_dfDIJoystick) != DI_OK)
19: {
20: pJoystick->Release();
21: return DIENUM_CONTINUE;
22: }
23:
24: // Set the cooperative level
25: if (pJoystick->SetCooperativeLevel(hwnd,

➥ DISCL_NONEXCLUSIVE | DISCL_FOREGROUND) != DI_OK)
26: {
27: pJoystick->Release();
28: return DIENUM_CONTINUE;
29: }
30:
31: // Set the X range
32: DIPROPRANGE diprg;
33: diprg.diph.dwSize = sizeof(diprg);
34: diprg.diph.dwHeaderSize = sizeof(diprg.diph);
35: diprg.diph.dwObj = DIJOFS_X;
36: diprg.diph.dwHow = DIPH_BYOFFSET;
37: diprg.lMin = -1000;
38: diprg.lMax = +1000;
39: if (pJoystick->SetProperty(pdev, DIPROP_RANGE, &diprg.diph) != DI_OK)
40: {
41: pJoystick->Release();
42: return DIENUM_CONTINUE;
43: }
44:
45: // Set the Y range

Introducing DirectInput—Getting User Input 349

17

continues

24 1634xCH17 11/13/99 11:16 AM Page 349

46: diprg.diph.dwObj = DIJOFS_Y;
47: if (pJoystick->SetProperty(pdev, DIPROP_RANGE, &diprg.diph) != DI_OK)
48: {
49: pJoystick->Release();
50: return DIENUM_CONTINUE;
51: }
52:
53: Set the X dead zone
54: DIPROPDWORD dipdw;
55: dipdw.diph.dwSize = sizeof(dipdw);
56: dipdw.diph.dwHeaderSize = sizeof(dipdw.diph);
57: dipdw.diph.dwObj = DIJOFS_X;
58: dipdw.diph.dwHow = DIPH_BYOFFSET;
59: dipdw.dwData = 100;
60: if (pJoystick->SetProperty(DIPROP_DEADZONE, &dipdw.diph) != DI_OK)
61: {
62: pJoystick->Release();
63: return DIENUM_CONTINUE;
64: }
65:
66: Set the Y dead zone
67: dipdw.diph.dwObj = DIJOFS_Y;
68: if (pJoystick->SetProperty(DIPROP_DEADZONE, &dipdw.diph) != DI_OK)
69: {
70: pJoystick->Release();
71: return DIENUM_CONTINUE;
72: }
73:
74: return DIENUM_STOP;
75: }

If the device creation fails, the function returns DIENUM_CONTINUE, which results in the
continuation of the enumeration process. The idea is that you want to keep enumerating
joysticks until you successfully create and initialize one. If the creation goes as planned,
DIENUM_STOP is returned, which ends the enumeration process. The pJoystick variable
should be global so that you have access to it beyond the EnumJoystickProc() function.

Another interesting change in dealing with joysticks, as opposed to the keyboard and
mouse, is obtaining a different interface for interacting with a joystick device. This is
necessary because the IDirectInputDevice2 interface supports the Poll() method,
which is very useful for polling joysticks for input. The QueryInterface() method is
called to obtain an IDirectInputDevice2 interface pointer, which is stored in the same
pJoystick variable.

The data format of the joystick is then set to the predefined global c_dfDIJoystick.
After setting the data format, the cooperative level is set with a call to
SetCooperativeLevel().

350 Hour 17

LISTING 17.2 continued

24 1634xCH17 11/13/99 11:16 AM Page 350

The final step in preparing the newly created joystick device is to set its properties.
Joystick properties include the range and dead zone for the X and Y axes. The range dic-
tates the minimum and maximum values associated with the joystick’s movement along a
given axis. For example, if you set the minimum and maximum values for the X axis to
1000 and -1000, respectively, moving the joystick all the way to the left will result in a
value of -1000. Likewise, moving the joystick all the way to the right will result in a
value of 1000. And finally, leaving the joystick centered results in a value of 0.

The dead zone for a joystick is the range of movement that you don’t want to qualify as
input. You can think of the dead zone as an enlarged center position for the joystick,
which means that with a dead zone you can move the joystick slightly, and it is still con-
sidered centered. Establishing a dead zone helps to keep joysticks from feeling too jittery
when you barely move them. Figure 17.1 illustrates the relationship between the range
and dead zone of a joystick.

Introducing DirectInput—Getting User Input 351

17

FIGURE 17.1
The relationship
between the range and
dead zone of a joystick.

Maximum
Y Range

Minimum
Y Range

Minimum
X Range

Maximum
X Range

Dead Zone

Center

The EnumJoystickProc() callback function uses the SetProperty() method to set the
range property for the joystick to -1000 and 1000 for both the X and Y axes. It also
establishes a dead zone of 100 for both axes using a similar approach; this means that
you will have to move the joystick at least one tenth of its full range for it to register as
valid input.

You can breathe a sigh of relief because you’re finally ready to learn how to read data
from a joystick. Listing 17.3 contains an example of code that polls the joystick and han-
dles its input data; this code would need to be placed in the main game loop.

24 1634xCH17 11/13/99 11:16 AM Page 351

LISTING 17.3 Code That Polls the Joystick and Handles Its Input Data

1: int iX = 0, iY = 0;
2: BOOL buttonDown[DI_MAX_BUTTONS];
3: DIJOYSTATE state;
4:
5: // Poll for new data
6: hr = pJoystick->Poll();
7:
8: // Obtain input data from the joystick
9: if (pJoystick->GetDeviceState(sizeof(DIJOYSTATE),

➥ &state) == DIERR_INPUTLOST)
10: {
11: // Reacquire the joystick and try again
12: if (pJoystick->Acquire() == DI_OK)
13: pJoystick->GetDeviceState(sizeof(DIJOYSTATE), &state);
14: }
15:
16: // Respond to the joystick input
17: iX = state.lX;
18: iY = state.lY;
19: for (int i = 0; i < DI_MAX_BUTTONS)
20: {
21: if (state.rgbButtons[i] & 0x80)
22: buttonDown[i] = TRUE;
23: else
24: buttonDown[1] = FALSE;
25: }

The Poll() method is first called to poll the joystick for new data. This is necessary so
that the next call to GetDeviceState() has the latest joystick input data. If the call to
GetDeviceState() fails, an attempt is made to reacquire the joystick and try again. The
joystick data is then obtained from the DIJOYSTATE structure, which contains information
such as the absolute joystick positions along each axis and the button states. The iX and
iY variables are used to store the joystick positions in the X and Y directions. The
buttonDown array keeps track of the state of the buttons on the joystick. You would prob-
ably want to make all of these variables global in the context of a real game.

I realize that I’ve skirted the issue of using the joystick data within the context of a work-
ing game. In reality, how you use device input data of any type is entirely dependent on
the specifics of a given game. Consequently, there is no catch-all solution that I can show
you. However, knowing how to retrieve input data from various devices should be
enough to get you going in supporting a wide range of devices in your own games.

352 Hour 17

24 1634xCH17 11/13/99 11:16 AM Page 352

Summary
This hour introduces you to DirectInput, the component of DirectX that is used to read
input devices such as the keyboard, the mouse, joysticks, and flight yokes. You began the
hour by learning some basics about DirectInput, such as why it is necessary and what
benefits it offers over the Win32 approach to handling device input. You then dug into
the DirectInput architecture and explored the different COM objects that comprise
DirectInput. I deliberately avoided covering the DirectInputEffect object, which applies
to force feedback devices; you tackle this in the next hour.

After laying the groundwork for DirectInput, the hour then guided you through the prac-
tical details of retrieving data from devices via DirectInput. More specifically, you
learned how to retrieve input data from the keyboard, the mouse, and joysticks. Although
it takes a little work to set up DirectInput and interact with DirectInput devices, the pay-
off is significant in terms of providing a very responsive feel to your games.

Q&A
Q I’m still a little fuzzy as to why the cooperative levels vary between different

input devices. What gives?

A First, let’s recap that the cooperative level of a device indicates two things. The first
thing is whether the device is available when the application is only in the foreground
or in both the foreground and background. It’s relatively obvious that the keyboard
and mouse should only support a foreground cooperative level because you wouldn’t
want a background application stealing mouse movements or keystrokes. The second
thing the cooperative level dictates is whether a device is acquired exclusively by an
application. The keyboard cannot be set to an exclusive cooperative level because
Windows itself requires certain keystrokes (Ctrl+Alt+Delete, Alt+Tab, and so on) to
work regardless of what an application is up to.

Q What is different about joysticks that requires you to poll for joystick input
using the Poll() method?

A Unlike most keyboards and mice, some joysticks don’t generate hardware inter-
rupts, which are required in order for the GetDeviceState() method to return valid
input data. More specifically, analog joysticks are typically the joysticks that must
be polled. Keep in mind that it doesn’t hurt anything to call the Poll() method on
any device; it will just do nothing if the device doesn’t require polling. You can
determine whether a device requires polling by calling the GetCapabilities()
method and checking the DIDEVCAPS structure for the DIDC_POLLEDDATAFORMAT
flag.

Introducing DirectInput—Getting User Input 353

17

24 1634xCH17 11/13/99 11:16 AM Page 353

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. With respect to DirectInput, what does the term “low latency” mean?

2. How does DirectInput offer improved performance over the Win32 API approach
to handling device input?

3. What COM object acts as an input device manager that allows you to enumerate
and access devices for use with DirectInput?

4. What global function must you call to create a DirectInput object?

5. Why do you typically never need to call the Initialize() method to initialize a
DirectInput object?

6. What is an attached device?

7. Why can’t you just call CreateDevice() to create joystick device objects as you do
keyboard and mouse devices objects?

8. What method do you call to determine to what degree an application allows an
input device to be shared with other applications?

9. What method must you call to obtain unbuffered input data from a device?

10. What must you do to properly clean up a DirectInput session?

11. Does reading the keyboard with DirectInput inhibit normal Windows keystroke
messages?

Exercises
1. Modify the cityscape application from earlier in the book so that it uses DirectInput

to input data from the mouse. The application’s view should move left and right
based on the user dragging the mouse left and right.

2. Modify the cityscape application so that it uses DirectInput to input data from a
joystick. The application’s view should move left and right based on the user mov-
ing the joystick left and right.

354 Hour 17

24 1634xCH17 11/13/99 11:16 AM Page 354

HOUR 18
Getting Through to the
User—Force Feedback

In the previous hour, I touched on the fact that DirectInput supports force
feedback, which is a technology that enables you to provide tactile feedback
to a user through an input device. Now that you have a solid understanding
of DirectInput and how it is used to obtain input from various devices, it’s
time to explore force feedback and how it works.

This hour introduces you to the force feedback features in DirectInput and
discusses some of the ways in which force feedback effects are used. You
also learn about the COM object that implements force feedback, along with
the practical details of how to use force feedback in your own games. By the
end of this hour, you’ll have the skills necessary to shake and rattle game
players with force feedback and have them begging for more!

25 1634xCH18 11/13/99 11:12 AM Page 355

In this hour, you will learn

� The basics of the force feedback technology
� How DirectInput supports force feedback
� How to enumerate and create force feedback effects
� How to use force feedback in games

Understanding Force Feedback
Although I love driving games, I’ve complained for years about how difficult it is to
really have control in driving games without feeling the tightness of the steering wheel.
Driving involves issuing responses to very subtle changes in steering wheel pressure,
which is reflective of the amount of control you have over the car. If you’ve ever driven
in icy conditions, you know what I’m talking about.

Up until the past few years, driving games have had a hard time conveying realism
because they had no way of injecting feedback into steering wheels. Arcade game manu-
facturers were the first to address this need, which resulted in a variety of coin-op driving
games that used force feedback to make the driving experience more realistic. However,
the mechanics involved made it difficult to scale the technology to video games at home.
Until now!

Innovative input device design coupled with DirectInput has finally ushered in force
feedback to the PC world. Microsoft was the first to bring a product to market with the
SideWinder Force Feedback Pro joystick. Other manufacturers have since followed suit
with their own joysticks. Even more recently, several different force feedback steering
wheels have cropped up, which finally allow me to have my cake and eat it too while
playing driving games in the comfort of my own home.

Force feedback devices have opened up all kinds of new opportunities for game develop-
ers. You can now add kick to guns in shoot-em-up games, jar the player with a punch in
fighting games, rattle the player when an explosion goes off, or even simulate a chainsaw
with force feedback. Microsoft had a really cool in-store display for the SideWinder
Force Feedback Pro joystick that even demonstrated a light saber force feedback effect.

Force Feedback Lingo
Before you get into the specifics of how DirectInput supports force feedback,
you need to learn some basics about force feedback terminology. Let’s start with

the basic element of force feedback: the effect. A force feedback effect is an instance of
force feedback that involves a push or resistance. The push or resistance associated with

356 Hour 18

NEW TERM

25 1634xCH18 11/13/99 11:12 AM Page 356

an effect is called the force of the effect. The magnitude of a force is the strength of the
force, which increases in a linear fashion. In other words, a force of 1,000 is twice as
powerful as a force of 500. The maximum force magnitude for a DirectInput device is
10,000. You can alter the magnitude of a force by applying a gain, which adjusts the
magnitude to make it weaker.

Gain is the degree to which a force magnitude is weakened.

The direction of a force indicates the direction from which the force is acting.
So, a southeast force originates from the southeast and acts in the direction of

northwest. An easier way to think of this is to associate the direction of a force with the
direction you would have to push the joystick to resist the force. A negative force magni-
tude indicates that a force is acting in the opposite direction.

Every effect has a duration, which determines how long the effect is to last. The
duration of effects is measured in microseconds.

Some effects are periodic, which means they repeat according to a certain pattern
or cycle. Periodic effects have a period that indicates the duration of a single

cycle. Varying the period of a periodic effect can dramatically alter the feel of the effect.
Periodic effects also have a phase associated with them, which is the point in the wave
where playback begins. If you’re having a hard time visualizing the period and phase of
a periodic effect, check out Figure 18.1.

Getting Through to the User—Force Feedback 357

18

NEW TERM

NEW TERM

NEW TERM

NEW TERM

Phase Period

Magnitude

FIGURE 18.1
The relationship
between the period,
phase, and magnitude
of a periodic effect.

Period is the duration of a single cycle of a periodic effect, measured in
microseconds.

You can alter an effect by applying an envelope, which is a set of values used to
alter the shape of the effect. More specifically, an envelope consists of an attack

value and a fade value, which alter the magnitude of the beginning and end of an effect’s

NEW TERM

NEW TERM

25 1634xCH18 11/13/99 11:12 AM Page 357

force. There is a duration associated with attack and fade that determines how long the
magnitude approaches or moves away from the sustain value. Sustain is the basic magni-
tude of the force in the absence of an attack or fade. Figure 18.2 illustrates how attack
and fade can be used to alter a constant force effect.

358 Hour 18

Attack Sustain FadeFIGURE 18.2
A constant force effect
altered by attack and
fade.

Attack is the period at the beginning of an effect when the force magnitude is
approaching its sustain level.

Fade is the period at the end of an effect when the force magnitude is moving
away from its sustain level.

Sustain is the period in an effect when the basic force magnitude is attained
(after the attack and before the fade).

Types of Effects
In learning some of the force feedback terminology, you’ve touched on some of the dif-
ferent types of force feedback effects supported by DirectInput. DirectInput supports a
wide range of effects that can be used to convey different things to the user. The effects
are divided into basic categories that describe the general characteristics of the effects:

� Constant force
� Ramp force
� Periodic effect
� Condition

Constant forces are the simplest effects and include effects that produce a constant
(steady) force in a given direction. Constant effects are useful for producing effects such
as punches and hits, as well as some types of resistance effects.

Ramp forces include effects that produce a force that steadily increases or decreases.
Ramp forces are similar to constant forces except that the magnitude of the force is

NEW TERM

NEW TERM

NEW TERM

25 1634xCH18 11/13/99 11:12 AM Page 358

steadily changing, whereas the magnitude of a constant force doesn’t change. Ramp
forces can be used to produce effects that fade in and out. For example, you might use a
ramp force to communicate the increased resistance felt as a character walks into water.

Periodic effects are very different from constant and ramp forces because they vary in
magnitude according to a periodic wave pattern, such as a sine wave. Periodic effects are
useful for producing effects such as vibrations.

Conditions are effects that are only produced in response to user input. A good example
of a condition is the spring effect that attempts to restore a joystick to its center position;
the effect is applied only when the user moves the joystick out of center.

Although these effect types paint the broad picture of effect support in DirectInput, you
have a lot of flexibility when it comes to altering effects. You can also create completely
custom effects if you find that the built-in DirectInput effects don’t suit your needs. Also,
some force feedback devices might include native effects that you can use in lieu of a
DirectInput effect.

Peeking Inside DirectInput
I mentioned earlier that force feedback is implemented as a part of DirectInput. Although
this is logical because force feedback is associated with input devices, when you think
about it, force feedback is really a type of output. I’m not trying to confuse you, I just
want you to understand the role of force feedback in DirectX. It’s certainly strange to
think of a joystick or steering wheel as an output device, but when it comes to force
feedback, that’s exactly what it is. You’ll find that using force feedback effects is concep-
tually similar to playing sounds. In other words, you’ll use DirectInput to play force
feedback effects on an input device much as you use DirectSound to play sounds on a
sound device.

Now that I’ve completely confused the issue, let’s take a look at how force feedback is
implemented in DirectInput. You’ll be glad to know that force feedback is built upon the
same DirectInput objects that you learned about in the previous hour. In fact, you can
add force feedback support to an existing DirectInput application by learning about one
additional DirectInput object, DirectInputEffect. Of course, DirectInputEffect is a COM
object, and its role is to encapsulate a force feedback effect for a given input device.

You create DirectInputEffect objects by calling the CreateEffect() method on a
DirectInputDevice2 object. DirectInputEffect objects adhere to the IDirectInputEffect

Getting Through to the User—Force Feedback 359

18

25 1634xCH18 11/13/99 11:12 AM Page 359

COM interface, which contains methods for controlling the playback of effects.
Following are the most commonly used methods in the IDirectInputEffect interface:

� Initialize()

� Start()

� Stop()

� Download()

� Unload()

� SetParameters()

� GetEffectStatus()

� Release()

The Initialize() method is called to initialize a DirectInputEffect object. Similar to its
counterparts in the IDirectInput and IDirectInputDevice interfaces, this method is
rarely called directly because it is called by the CreateEffect() method when you first
create a DirectInputEffect object. The majority of the work involved in using effects
takes place during effect creation, when you must set up a variety of data structures to
establish the parameters of the effect to be created. You learn more about creating effects
a little later in the lesson.

After you’ve created a DirectInputEffect object, you can begin playing the effect on an
input device. The Start() method starts playing an effect. It’s important to understand
that effects must be downloaded into the memory of a force feedback device. If an effect
has not been downloaded or has been modified since being downloaded, the Start()
method will cause the effect to be downloaded before it is played. To stop playing an
effect, you can call the Stop() method.

The Download() and Unload() methods are used to manually download and unload
effects to and from a device. It typically isn’t necessary to call these methods directly
because they are automatically called by other DirectInputEffect methods whenever it is
appropriate.

You can dynamically alter an effect by calling the SetParameters() method. This
method accepts a DIEFFECT structure that contains information about an effect, as well as
a series of flags that indicate which part of the effect is to be altered. Table 18.1 lists
some of the more commonly used flags associated with the SetParameters() method.

360 Hour 18

25 1634xCH18 11/13/99 11:12 AM Page 360

TABLE 18.1 Flags Commonly Used with the SetParameters() Method

Flag Usage

DIEP_AXES Sets the axes of the effect

DIEP_DIRECTION Sets the direction of the effect

DIEP_DURATION Sets the duration of the effect

DIEP_ENVELOPE Sets the envelope of the effect

DIEP_GAIN Sets the gain of the effect

DIEP_TRIGGERBUTTON Sets the trigger button for the effect

DIEP_TRIGGERDELAY Sets the trigger delay for the effect

DIEP_TRIGGERREPEATINTERVAL Sets the trigger repeat interval for the effect

DIEP_NODOWNLOAD Suppresses the automatic downloading of the effect

DIEP_START Starts the effect after the parameters are set

The GetEffectStatus() method is used to get the status of an effect. Values returned by
this method can be DIEGES_PLAYING, DIEGES_EMULATED, or 0. DIEGES_PLAYING indicates
that the effect is playing, whereas DIEGES_EMULATED indicates that the effect is emulated.
A value of 0 indicates that the effect isn’t playing or emulated.

As with all DirectX COM objects, it is necessary to release a DirectInputEffect object
after you’re finished with it. The Release() method handles this task. This cleanup
should always precede the call to Release() on the DirectInput object.

Putting Force Feedback to Work
You’ll be glad to know that using force feedback doesn’t involve too much extra work
beyond that of supporting a traditional joystick. Consequently, the initialization of a force
feedback device closely resembles that of a traditional input device. Following are the
main steps involved in creating and initializing a force feedback device:

1. Enumerate the attached force feedback devices with a call to the EnumDevices()
method on the DirectInput object.

2. Create the DirectInputDevice object with a call to the CreateDevice() method
on the DirectInput object.

3. Obtain a pointer to an IDirectInputDevice2 interface with a call to the
QueryInterface() method.

4. Set the device’s data format with a call to the SetDataFormat() method.

5. Set the device’s behavior with a call to the SetCooperativeLevel() method.

Getting Through to the User—Force Feedback 361

18

25 1634xCH18 11/13/99 11:12 AM Page 361

6. Enumerate the available force feedback effects with a call to the EnumEffects()
method in the IDirectInputDevice2 interface.

7. Create DirectInputEffect objects with calls to the CreateEffect() method in the
IDirectInputDevice2 interface.

8. Acquire the device with a call to the Acquire() method.

You might notice that a few steps here are different from working with a traditional input
device, such as a basic joystick. First, the device enumeration must take into account that
you’re looking specifically for force feedback devices. This is how you would be able to
tell whether the user can take advantage of force feedback features. If no force feedback
devices are found, you could simply fall back on traditional input device support.

The next big change in working with force feedback devices is enumerating the available
force feedback effects. This step isn’t strictly required, especially if you are planning on
using basic effects such as constant forces. Instead of enumerating effects and using the
global identifier returned by the callback function, you can use one of the following pre-
defined effect identifiers:

� GUID_ConstantForce

� GUID_RampForce

� GUID_Square

� GUID_Sine

� GUID_Triangle

� GUID_SawtoothUp

� GUID_SawtoothDown

� GUID_Spring

� GUID_Damper

� GUID_Inertia

� GUID_Friction

Of course, it’s still a good idea to enumerate the available effects even if you use one of
the predefined effects. This is because not all force feedback devices are guaranteed to
support all of these effects. Granted, it’s a safe bet that simple effects such as
GUID_ConstantForce will be available, but the safe and sure approach is to always enu-
merate effects.

After you’ve successfully enumerated an effect and obtained its global identifier (or
selected a predefined global effect identifier), you are ready to create the effect as a
DirectInputEffect object. You call the CreateEffect() method to accomplish this task,

362 Hour 18

25 1634xCH18 11/13/99 11:12 AM Page 362

but there are a handful of structures that you’ll need to initialize properly before doing
so. We’ll get into the details of these structures in a moment. For now, I just want to
focus on the big picture.

Speaking of the big picture, when an effect is successfully created, you’re ready to play it
on a device. Playing an effect is as simple as calling the Start() method on the effect.
Now you have an idea how force feedback is implemented in a game. Let’s move on to
the specifics of how to accomplish this stuff in code.

Enumerating and Creating Force Feedback Devices
Just as you learned how to enumerate traditional joysticks in the previous hour, you must
also enumerate force feedback devices. The reason is because you can’t just assume that
every user has shelled out the money to buy a fancy force feedback joystick or steering
wheel. Remember, the keyboard and mouse are the only two input devices that you can
make assumptions about being available; everything else must be enumerated.

Following is code that gets the enumeration process started for force feedback devices:

lpDI->EnumDevices(DIDEVTYPE_JOYSTICK, EnumFFJoystickProc, lpDI,
DIEDFL_FORCEFEEDBACK | DIEDFL_ATTACHEDONLY);

This call is similar to the one that enumerates traditional joysticks. In fact, the only
change is the addition of the DIEDFL_FORCEFEEDBACK flag, which indicates that only
force feedback devices are to be enumerated. Of course, the key to enumeration
working is providing a suitable callback function. Listing 18.1 contains the
EnumFFJoystickProc() callback function, which creates a force feedback joystick
device based on the first attached device that is enumerated.

LISTING 18.1 The EnumFFJoystickProc() Callback Function That Is Called to
Enumerate Force Feedback Joysticks

1: BOOL FAR PASCAL EnumFFJoystickProc(LPCDIDEVICEINSTANCE pdinst,
➥ LPVOID pvRef)

2: {
3: LPDIRECTINPUTDEVICE pDevice;
4: LPDIRECTINPUT pdi = (LPDIRECTINPUT)pvRef;
5:
6: // Create the joystick device
7: if (pdi->CreateDevice(pdinst->guidInstance, &pDevice, NULL) != DI_OK)
8: return DIENUM_CONTINUE;
9:
10: // Obtain an IDirectInput2 interface for the device
11: if (pDevice->QueryInterface(IID_IDirectInputDevice2,
12: (LPVOID*)&pFFJoystick) != DI_OK)
13: {

Getting Through to the User—Force Feedback 363

18

continues

25 1634xCH18 11/13/99 11:12 AM Page 363

14: pDevice->Release();
15: return DIENUM_CONTINUE;
16: }
17: pDevice->Release();
18:
19: // Set the joystick data format
20: if (pFFJoystick->SetDataFormat(&c_dfDIJoystick) != DI_OK)
21: {
22: pFFJoystick->Release();
23: return DIENUM_CONTINUE;
24: }
25:
26: // Set the cooperative level
27: if (pFFJoystick->SetCooperativeLevel(hWnd,

➥ DISCL_EXCLUSIVE | DISCL_FOREGROUND) != DI_OK)
28: {
29: pFFJoystick->Release();
30: return DIENUM_CONTINUE;
31: }
32:
33: // Set the X range
34: DIPROPRANGE diprg;
35: diprg.diph.dwSize = sizeof(diprg);
36: diprg.diph.dwHeaderSize = sizeof(diprg.diph);
37: diprg.diph.dwObj = DIJOFS_X;
38: diprg.diph.dwHow = DIPH_BYOFFSET;
39: diprg.lMin = -1000;
40: diprg.lMax = +1000;
41: if (pFFJoystick->SetProperty(DIPROP_RANGE, &diprg.diph) != DI_OK)
42: {
43: pFFJoystick->Release();
44: return DIENUM_CONTINUE;
45: }
46:
47: // Set the Y range
48: diprg.diph.dwObj = DIJOFS_Y;
49: if (pFFJoystick->SetProperty(DIPROP_RANGE, &diprg.diph) != DI_OK)
50: {
51: pFFJoystick->Release();
52: return DIENUM_CONTINUE;
53: }
54:
55: // Turn off auto center
56: DIPROPDWORD DIPropAutoCenter;
57: DIPropAutoCenter.diph.dwSize = sizeof(DIPROPDWORD);
58: DIPropAutoCenter.diph.dwHeaderSize = sizeof(DIPROPHEADER);
59: DIPropAutoCenter.diph.dwObj = 0;
60: DIPropAutoCenter.diph.dwHow = DIPH_DEVICE;
61: DIPropAutoCenter.dwData = DIPROPAUTOCENTER_OFF;
62: if (pFFJoystick->SetProperty(DIPROP_AUTOCENTER,

364 Hour 18

LISTING 18.1 continued

25 1634xCH18 11/13/99 11:12 AM Page 364

➥ &DIPropAutoCenter.diph) != DI_OK)
63: {
64: pFFJoystick->Release();
65: return DIENUM_CONTINUE;
66: }
67:
68: return DIENUM_STOP;
69: }

This callback function is similar in many ways to the joystick enumeration function you
learned about in the previous hour. One notable change is that the cooperative level of
the joystick is set to exclusive, which is a requirement of all force feedback devices. The
other big change is the addition of code to turn off the auto center feature. Auto center is
a feature that involves the motors of a force feedback device automatically trying to
restore the joystick to the center position. Auto center basically emulates the feel of a tra-
ditional joystick by simulating centering springs, but it can get in the way of other force
feedback effects. In most cases, you’ll want to turn off auto center.

At this point, you’ve successfully enumerated and created a force feedback device that is
ready to both communicate user input and play force feedback effects. The next step is to
enumerate force feedback effects to see what effects you’re capable of playing.

Enumerating Force Feedback Effects
As you might suspect, the process of enumerating force feedback effects is similar to that
of enumerating input devices. More specifically, you must create a callback function that
is called in response to each enumerated effect. To get the enumeration process started,
you must first call the EnumEffects() method using the IDirectInputDevice2 interface
on an input device. Following is the syntax for this method:

HRESULT EnumEffects(LPDIENUMEFFECTSCALLBACK lpCallback, LPVOID pvRef,
DWORD dwEffType);

The first parameter, lpCallback, is a pointer to the enumeration callback function. The
second parameter, pvRef, is a pointer to application-specific data that is passed into the
callback function. The last parameter, dwEffType, is a flag that determines what kinds of
effects are enumerated. Valid values for this flag include

� DIEFT_ALL

� DIEFT_CONSTANTFORCE

� DIEFT_RAMPFORCE

� DIEFT_PERIODIC

� DIEFT_CONDITION

Getting Through to the User—Force Feedback 365

18

25 1634xCH18 11/13/99 11:12 AM Page 365

� DIEFT_FFATTACK

� DIEFT_FFFADE

� DIEFT_SATURATION

� DIEFT_DEADBAND

� DIEFT_POSNEGCOEFFICIENTS

� DIEFT_POSNEGSATURATION

� DIEFT_CUSTOMFORCE

� DIEFT_HARDWARE

You’ll probably recognize the first few flags because they indicate the basic effect types
you learned about earlier in the hour. You can combine any of the flags listed to enumer-
ate a range of force feedback devices. Following is an example of calling the
EnumEffects() method to enumerate constant force effects:

GUID guidEffect;
pFFJoystick->EnumEffects((LPDIENUMEFFECTSCALLBACK)EnumEffectProc, &guidEffect,

DIEFT_CONSTANTFORCE);

This code establishes the callback function as EnumEffectProc(), which you will learn
about in a moment. It also passes in the address of a global effect identifier, guidEffect,
which will eventually contain the enumerated effect. The flag DIEFT_CONSTANTFORCE is
used to indicate that only constant force effects are to be enumerated.

The work of obtaining a global effect identifier is left up to the enumeration callback
function, EnumEffectProc(). Listing 18.2 contains the code for this function.

LISTING 18.2 The EnumEffectProc() Callback Function That Is Called to
Enumerate Force Feedback Effects

1: BOOL CALLBACK EnumEffectProc(LPCDIEFFECTINFO pei, LPVOID pv)
2: {
3: GUID* pguidEffect = NULL;
4:
5: if(pv)
6: {
7: // Set the global effect identifier
8: pguidEffect = (GUID*)pv;
9: *pguidEffect = pei->guid;
10:
11: // Stop enumerating
12: return DIENUM_STOP;
13: }
14:
15: // Keep enumerating
16: return DIENUM_CONTINUE;
17: }

366 Hour 18

25 1634xCH18 11/13/99 11:12 AM Page 366

The EnumEffectProc() callback function in Listing 18.2 presents a fairly simplistic
approach to enumerating effects because it grabs the first effect and quits. You could add
additional logic to dig into the DIEFFECTINFO structure pointed to by the pei parameter
and determine more about each enumerated effect. For now, let’s assume that the first
enumerated constant force effect is acceptable. That way we can move on to creating the
actual effect object.

Creating Force Feedback Effects
After you’ve determined that a particular force feedback effect is available, you’re ready
to create the actual effect. Force feedback effects are relatively complex to allow for lots
of flexibility. For this reason, there are a variety of different data structures that you must
initialize in order to create an effect. Following are the structures involved in creating an
effect:

� An array of axes for the effect
� An array of direction values for the effect
� A type-specific structure such as DICONSTANTFORCE, DIRAMPFORCE, DIPERIODIC, or
DICONDITION

� A DIENVELOPE structure for defining the effect’s envelope (optional)
� A DIEFFECT structure that pulls together the other data structures

The first two data structures are very closely related because the number of axes of an
effect determines the number of dimensions of the direction. For example, an effect act-
ing along the X and Y axes will require a direction that consists of X and Y components,
assuming that you’re expressing the direction in terms of Cartesian coordinates. The real
point I’m getting at is that the number of elements in the direction array must match the
number of elements in the axes array, even if you don’t end up using all the elements.
Why would you not use all the elements?

The answer has to do with the fact that you can express the direction of an effect in one
of three ways:

� Cartesian coordinates
� Polar coordinates
� Spherical coordinates

Cartesian coordinates consist of simple XYZ components. However, because they are
being used solely for establishing a direction, the magnitudes of the values don’t really
matter. For example, the following direction arrays all refer to a two-dimensional effect
originating in the up, or north, direction:

LONG lDirection1[2] = { 0, -1 };
LONG lDirection2[2] = { 0, -4 };
LONG lDirection3[2] = { 0, -27 };

Getting Through to the User—Force Feedback 367

18

25 1634xCH18 11/13/99 11:12 AM Page 367

Keep in mind that the Y-axis increases down, which means that a negative Y direction
indicates an upward direction.

Although Cartesian coordinates are perfectly acceptable for describing effect directions, I
prefer polar coordinates. Polar coordinates involve a single value that indicates a direc-
tional angle measured clockwise from the up (north) direction, which lies at 0 degrees.
So, a two-dimensional direction originating from the east direction would have the fol-
lowing polar coordinates:

LONG lDirection[2] = { 90 * DI_DEGREES, 0 };

Notice that the DI_DEGREES constant is used to properly convert the degrees for use with
DirectInput, which expects degrees to be entered in hundredths of degrees. The
DI_DEGREES constant makes the code a little easier to read. You might also be curious
about the second array element, 0. If you recall, I said that the number of elements in the
direction array must match the number of elements in the axes array. Because the first
element is all that matters when dealing with polar coordinates, you can just set the sec-
ond element to 0.

Your other option in establishing effect direction is to use spherical coordinates.
Spherical coordinates are really only useful for describing three-dimensional directions,
which as of yet aren’t supported in any force feedback devices. So, let’s skip the details
of them and move on.

Now that I’ve hopefully convinced you to use polar coordinates to define directions, let’s
see some code for both the axes and direction arrays together. The following code estab-
lishes a two-dimensional effect acting from the northwest direction:

DWORD dwAxes[2] = { DIJOFS_X, DIJOFS_Y };
LONG lDirection[2] = { 315 * DI_DEGREES, 0 };

The next step in creating an effect is to fill out a type-specific structure with details about
the effect. In the case of a constant force effect, this involves filling out a DICONSTANT-
FORCE structure. Fortunately, the DICONSTANTFORCE structure contains only one member,
lMagnitude, which specifies the magnitude of the force. Following is code to set the
magnitude of a constant force to the maximum allowable force:

DICONSTANTFORCE diConstantForce;
diConstantForce.lMagnitude = DI_FFNOMINALMAX;

368 Hour 18

The magnitude of constant force effects ranges from -10000 to +10000. The
DI_FFNOMINALMAX predefined constant is set to +10000. A negative force
magnitude acts in the opposite direction of the force, whereas a magnitude
of 0 results in no force.

25 1634xCH18 11/13/99 11:12 AM Page 368

The last structure to set up for an effect is the DIEFFECT structure, which pulls together
all the other effect data. This structure is where you indicate the type of coordinates used
to specify the direction of the effect (DIEFF_CARTESIAN, DIEFF_POLAR, or DIEFF_SPHERI-
CAL). You also set the duration of the effect, in microseconds, along with the gain of the
effect, if any. Additionally, you can set the effect so that it is triggered automatically off
one of the joystick fire buttons. Following is sample code to fill out a DIEFFECT structure
for a simple constant force effect:

DIEFFECT diEffect;
diEffect.dwSize = sizeof(DIEFFECT);
diEffect.dwFlags = DIEFF_POLAR | DIEFF_OBJECTOFFSETS;
diEffect.dwDuration = 4 * DI_SECONDS;
diEffect.dwSamplePeriod = 0;
diEffect.dwGain = DI_FFNOMINALMAX;
diEffect.dwTriggerButton = DIEB_NOTRIGGER;
diEffect.dwTriggerRepeatInterval = 0;
diEffect.cAxes = 2;
diEffect.rgdwAxes = dwAxes;
diEffect.rglDirection = lDirection;
diEffect.lpEnvelope = NULL;
diEffect.cbTypeSpecificParams = sizeof(DICONSTANTFORCE);
diEffect.lpvTypeSpecificParams = &diConstantForce;

Notice that the coordinate type is set to polar, and the duration of the effect is set to 4
seconds. The gain of the effect is set to the maximum, which results in the effect playing
at the full magnitude that was set in the DICONSTANTFORCE structure. A lower gain results
in the force’s magnitude being lessened. The effect is set so that it doesn’t trigger off of a
joystick fire button thanks to the DIEB_NOTRIGGER flag. Keep in mind that you can still
play the effect in response to the fire button; you’ll just have to do it yourself. The trigger
repeat interval is used to set the repeat delay for triggered effects when a fire button is
held down; in this case it doesn’t apply.

The number of axes for the effect is set to 2, which indicates the lengths of both the axes
and direction arrays. These arrays are then set to DIEFFECT structure members. This
example doesn’t use an envelope, so the lpEnvelope member is set to NULL. Finally, the
DICONSTANTFORCE structure is set to the appropriate DIEFFECT member, which finishes up
the preparation of the effect for creation.

Creating the effect is then as simple as calling the CreateEffect() method, like this:

pFFJoystick->CreateEffect(GUID_ConstantForce, &diEffect, &pConstForce, NULL);

The first parameter is either the global identifier returned from effect enumeration or one
of the predefined global effect identifiers. The second parameter is the address of the
DIEFFECT structure you just created. The third parameter is the address of the effect
object to be created. And finally, the last parameter is for COM aggregation and is typi-
cally passed as NULL.

Getting Through to the User—Force Feedback 369

18

25 1634xCH18 11/13/99 11:12 AM Page 369

To put everything into perspective, Listing 18.3 contains a complete listing of the code
involved in creating a simple constant force effect.

LISTING 18.3 Code to Create a Simple Constant Force Effect Originating from the
West Direction

1: DWORD dwAxes[2] = { DIJOFS_X, DIJOFS_Y };
2: LONG lDirection[2] = { 270 * DI_DEGREES, 0 };
3:
4: DICONSTANTFORCE diConstantForce;
5: diConstantForce.lMagnitude = DI_FFNOMINALMAX;
6:
7: DIEFFECT diEffect;
8: diEffect.dwSize = sizeof(DIEFFECT);
9: diEffect.dwFlags = DIEFF_POLAR | DIEFF_OBJECTOFFSETS;
10: diEffect.dwDuration = 0.5 * DI_SECONDS;
11: diEffect.dwSamplePeriod = 0;
12: diEffect.dwGain = DI_FFNOMINALMAX;
13: diEffect.dwTriggerButton = DIEB_NOTRIGGER;
14: diEffect.dwTriggerRepeatInterval = 0;
15: diEffect.cAxes = 2;
16: diEffect.rgdwAxes = dwAxes;
17: diEffect.rglDirection = lDirection;
18: diEffect.lpEnvelope = NULL;
19: diEffect.cbTypeSpecificParams = sizeof(DICONSTANTFORCE);
20: diEffect.lpvTypeSpecificParams = &diConstantForce;
21:
22: LPDIRECTINPUTEFFECT pConstForce;
23: pFFJoystick->CreateEffect(GUID_ConstantForce, &diEffect,

➥ &pConstForce, NULL);

Playing Force Feedback Effects
You’ll be glad to know that the main work involved in supporting force feedback is cre-
ating the effects. Playing an effect is the easy part, as the following code demonstrates:

pConstForce->Start(1, 0);

The two parameters to the Start() method are the number of iterations for the effect and
a flag indicating how the effect is to be played, respectively. In this example, the effect is
played once, as evident by passing 1 as the number of iterations. You can also pass
INFINITE for this value to play the effect repeatedly until it is explicitly stopped. The
second parameter can use either of the flags DIES_SOLO and DIES_DOWNLOAD, or both. The
DIES_SOLO flag indicates that any other effects being played should be stopped in order
to play the specified effect. The DIES_DOWNLOAD flag indicates that the effect should not
automatically be downloaded into the input device to be played. Passing 0 for the second
parameter to Start() results in neither of these flags taking effect.

370 Hour 18

25 1634xCH18 11/13/99 11:12 AM Page 370

To stop an effect, you call the Stop() method, like this:

pConstForce->Stop();

Altering Force Feedback Effects
It is fairly common to alter an effect after creating it. For example, you might want to
change the magnitude of a constant force in response to something that occurred in a game.
DirectInput provides a straightforward approach for altering effect properties via the
SetParameters() method. The SetParameters() method allows you to alter the properties
of an effect using the same structures you worked with when initially creating the effect.

Earlier in the hour, you learned about some of the different flags used with the
SetParameters() method. Following is an example of setting the magnitude of a con-
stant force effect using the SetParameters() method:

diConstantForce.lMagnitude = DI_FFNOMINALMAX / 2;
pConstForce->SetParameters(&diEffect, DIEP_TYPESPECIFICPARAMS);

This code sets the magnitude of a constant force effect to half of its maximum value.
Notice that this code requires you to keep around the original structures used to create
the effect. You could also create and initialize new structures, but it’s a lot easier to reuse
the old ones. So, if you plan on altering an effect after creation, you might as well make
the effect creation structures global variables.

Force Feedback Effect Recipes
To finish up the hour, I want to provide you with a couple of recipes for force feedback
effects that you might find handy. Because you already have the knowledge to enumerate
and create effects, I’m going to focus on the specific properties that comprise these
effects.

First is an explosion effect, which is a periodic effect that makes the joystick shake for a
second. This effect uses an envelope to fade out over the entire duration of the effect.
Keep in mind that you will need to enumerate periodic effects in order to obtain a global
identifier that will work with this effect. Listing 18.4 contains the code that describes the
effect.

Getting Through to the User—Force Feedback 371

18

One caveat to using INFINITE as the first parameter to Start() is that any
envelope defined for the effect will be applied over and over each time the
effect is played. This might be the desired result, but in some cases it might
not. If you don’t want this result, you can still repeat the effect by setting
the dwDuration member of the DIEFFECT structure to INFINITE.

25 1634xCH18 11/13/99 11:12 AM Page 371

LISTING 18.4 Code That Describes an Explosion Force Feedback Effect

1: DWORD dwAxes[1] = {DIJOFS_X};
2: LONG lDirection[1] = {0};
3:
4: DIENVELOPE diEnvelope;
5: diEnvelope.dwSize = sizeof(DIENVELOPE);
6: diEnvelope.dwAttackLevel = 0;
7: diEnvelope.dwAttackTime = 0;
8: diEnvelope.dwFadeLevel = 0;
9: diEnvelope.dwFadeTime = 1.0 * DI_SECONDS;
10:
11: DIPERIODIC diPeriodic;
12: diPeriodic.dwMagnitude = DI_FFNOMINALMAX;
13: diPeriodic.lOffset = 0;
14: diPeriodic.dwPhase = 0;
15: diPeriodic.dwPeriod = 0.1 * DI_SECONDS;
16:
17: DIEFFECT diEffect;
18: diEffect.dwSize = sizeof(DIEFFECT);
19: diEffect.dwFlags = DIEFF_OBJECTOFFSETS | DIEFF_CARTESIAN;
20: diEffect.dwDuration = 1.0 * DI_SECONDS;
21: diEffect.dwSamplePeriod = 0;
22: diEffect.dwGain = DI_FFNOMINALMAX;
23: diEffect.dwTriggerButton = DIEB_NOTRIGGER;
24: diEffect.dwTriggerRepeatInterval = 0;
25: diEffect.cAxes = 1;
26: diEffect.rgdwAxes = dwAxes;
27: diEffect.rglDirection = lDirection;
28: diEffect.lpEnvelope = &diEnvelope;
29: diEffect.cbTypeSpecificParams = sizeof(DIPERIODIC);
30: diEffect.lpvTypeSpecificParams = &diPeriodic;

Another useful effect is a gunfire effect that quickly shakes the joystick in response to a
gun being fired. Listing 18.5 contains the code for this effect.

LISTING 18.5 Code That Describes a Gunfire Force Feedback Effect

1: DWORD dwAxes[1] = {DIJOFS_Y};
2: LONG lDirection[1] = {1};
3:
4: DICONSTANTFORCE diConstantForce;
5: diConstantForce.lMagnitude = DI_FFNOMINALMAX;
6:
7: DIEFFECT diEffect;
8: diEffect.dwSize = sizeof(DIEFFECT);
9: diEffect.dwFlags = DIEFF_CARTESIAN | DIEFF_OBJECTOFFSETS;
10: diEffect.dwDuration = 0.02 * DI_SECONDS;
11: diEffect.dwSamplePeriod = 0;

372 Hour 18

25 1634xCH18 11/13/99 11:12 AM Page 372

12: diEffect.dwGain = DI_FFNOMINALMAX;
13: diEffect.dwTriggerButton = DIEB_NOTRIGGER;
14: diEffect.dwTriggerRepeatInterval = 0;
15: diEffect.cAxes = 1;
16: diEffect.rgdwAxes = dwAxes;
17: diEffect.rglDirection = lDirection;
18: diEffect.lpEnvelope = NULL;
19: diEffect.cbTypeSpecificParams = sizeof(DICONSTANTFORCE);
20: diEffect.lpvTypeSpecificParams = &diConstantForce;

Because the gunfire effect acts in a single direction to simulate a gun “kicking” at you, I
decided to demonstrate how to use Cartesian coordinates.

By studying these two effects, you should be able to come up with some interesting
effects of your own. This is certainly a situation in which exploring different values can
be extremely interesting.

Summary
This hour continues the previous hour’s coverage of DirectInput, by introducing you to
the force feedback features of DirectInput. You began the hour by learning some of the
basic terminology associated with force feedback programming, along with some key
concepts necessary to move forward and implement force feedback in games. From
there, you peeked inside the DirectInputEffect COM object and studied some of the
methods it supports for creating and playing force feedback effects.

You then spent the remainder of the hour learning the ins and outs of creating and using
force feedback effects. It was hopefully comforting for you to learn that force feedback
doesn’t change much in the way input devices are handled by DirectInput; it really is an
additional feature that you can support if you so desire. The hour ends by showing you a
couple of force feedback effect “recipes” that you can try out in your own games.

Q&A
Q Is it possible to alter the magnitude of all forces on a given device?

A Yes. In addition to using gain to alter the magnitude of individual forces, you can
also use gain to alter the magnitude of all forces played on a given device. You set
the gain for an entire device by calling the SetProperty() method on the device
and including DIEP_GAIN in the flags parameter.

Getting Through to the User—Force Feedback 373

18

25 1634xCH18 11/13/99 11:12 AM Page 373

Q How does DirectInput support device-specific force feedback effects?

A DirectInput supports device-specific force feedback effects in much the same way
as it supports standard effects. The main difference is that the hardware device ven-
dor is responsible for providing a global identifier for the effect, as well as a cus-
tom structure for the type-specific parameters of the effect. After you have the
global identifier and the type-specific structure, you can proceed with initializing
and creating the effect just as you would any other effect.

Q I’ve noticed an I-FORCE logo on many DirectX games. Are these games using
DirectInput?

A Yes. I-FORCE is an after-market SDK that abstracts DirectInput force effect cre-
ation, storage, retrieval, and real-time control by treating force effects in a way
similar to sounds or other resources.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. What is the force of a force feedback effect?

2. What is the magnitude of a force?

3. How does gain impact an effect?

4. What specific direction does the direction of a force indicate?

5. What is a periodic effect?

6. What is an envelope?

7. What is the sustain of an effect?

8. What is the attack of an effect?

9. What is the fade of an effect?

10. What are the four basic types of force feedback effects?

Exercises
1. Modify the cityscape application from the previous hour so that it supports force

feedback. More specifically, add a gunshot constant force effect that quickly jars
the joystick each time the main fire button is pressed. You’ll also want to play a
gunshot sound to make the effect more realistic.

2. Modify the cityscape application so that a rumbling effect is played whenever the
taxi drives by. You will need to use a periodic effect to accomplish this.

374 Hour 18

25 1634xCH18 11/13/99 11:12 AM Page 374

HOUR 19
3D Sound—From
Panning to Doppler
Effects

In Hour 6, “DirectSound—Adding Ambience and Sound Effects to Your
Game,” I introduced you to DirectSound, and you learned how to create
DirectSound buffers and manage such important tasks as low-latency
sound mixing and playback. You saw, in some detail, the mechanics of
the DirectSound API and how you use the methods DirectSound supports
to add realistic (low-latency) sound effects to your game.

This hour takes you a step further. Hour 6 was intentionally vague regarding
the fascinating realm of 3D sound. After all, it’s one thing to hear an oppo-
nent, but it’s quite another to hear the opponent in 3D space! I mentioned
the 3D aspects of DirectSound casually, but I didn’t really get into the meat
of 3D sound and the interfaces necessary to pull it off.

26 1634xCH19 11/13/99 11:13 AM Page 375

In this hour, you will learn

� The physics of sound and how we perceive sound
� How DirectSound supports 3D sound simulation
� How to create and use 3D sound buffers and listeners
� How to use 3D sound in games

Introduction to 3D Sound
I fondly recall some of the earliest computer games I owned, dating back to my Apple II
days. Sound, at least at that time, consisted of bleeps and dings created by successive
reads to the Apple’s speaker port. The more often you read the port, the more often the
speaker would emit a tiny sound. If you varied the rate at which you read the speaker
port, you were rewarded with a varyingly pitched sound.

The early days of the PC weren’t much better, but soon dedicated sound hardware was
introduced and better sounds and music emanated from the PC’s speaker, and later,
stereo speakers. Even so, the sounds were still two dimensional—flat and lifeless.

Today, there is a wealth of ongoing research studying spatial sound and how humans per-
ceive sound. True, much of the research isn’t directed at game programming in particular,
but I see no reason why game programmers can’t take advantage of innovations in 3D
sound generation to enhance their user’s gaming experience, even with only two speakers.
Microsoft must feel the same as I do because they have put together a formidable 3D
sound package, and as you’ll soon see, using it isn’t hard to do at all. After you under-
stand some basic terms and concepts, adding 3D sound effects is easy!

The Physics of Sound
What is sound? In a nutshell, sound is nothing more than moving air. The air around us
is compressed and expanded by pressure waves. (That’s why there is no sound in space,
no matter what Star Wars would have you believe!) In the real world, then, sound is cre-
ated when things vibrate. When an object vibrates, the air around it ebbs and flows at the
same rate as the object’s oscillation, at least in close proximity to the object. The faster
the object moves, the faster the air moves. If the object vibrates more forcefully, so does
the air.

With this simplistic understanding, here are some key terms and illustrations to help you
understand sound in 3D.

Spatial sound is another reference to sound in three dimensions.

376 Hour 19

NEW TERM

26 1634xCH19 11/13/99 11:13 AM Page 376

Pitch is the frequency of the pressure wave’s oscillation. The faster the oscillation, the
higher the pitch (frequency). Conversely, the slower the oscillation, the lower the pitch.

Volume is the relative strength of the pressure wave. Waves with higher energy
levels are louder, whereas waves with less energy are quieter.

Rolloff is the reduction in volume because of increased distance from the vibrat-
ing object. Air attentuates pressure waves over distance, which is to say sound
can’t travel forever at the same intensity (volume).

Doppler shift is the effect of increasing and decreasing pitch as the vibrating
object moves past the listener. In effect, if the object is moving towards you, the

object’s velocity is added to the sound frequency, causing an increase in pitch. You simi-
larly hear a decrease in pitch as the object travels away from you because the velocity of
the object is subtracted from the sound frequency. I’ll also refer to this as Doppler effect.

Figure 19.1 tries to show the relationship between the density of sound pressure waves
and pitch. The higher the wave frequency, the higher the pitch. Figure 19.1 also tries to
indicate rolloff. The person close to the car hears the horn quite loudly, whereas the more
distant person hears a quieter horn, if they can hear it at all.

3D Sound—From Panning to Doppler Effects 377

19

NEW TERM

NEW TERM

NEW TERM

“What?”

“Loud!”

(Rolloff)
beep! beep!

Lower pitch (frequency)

Higher pitch (frequency)

FIGURE 19.1
Sound waves, pitch
(frequency), and
rolloff.

The Doppler effect is really about frequency shifting. That is, if you were stationary and
the car approached you at a high rate of speed and honked, the sound you would hear
would be of a higher pitch than if the car were stationary near you. Similarly, if the car
were driving away at a high rate of speed and honked, you would hear a lower pitch than
if the car were simply parked nearby. It isn’t that the car’s horn changed its sound, but

26 1634xCH19 11/13/99 11:13 AM Page 377

rather that you, as the listener, perceive the sound differently because of the motion of
the car. Figure 19.2 tries to show you this effect visually. Note that nothing I’ve said
indicates that the listener must be stationary. In fact, it’s often the case that the sound’s
source and the listener are both in motion, thus complicating matters!

378 Hour 19

“Nice car!”

“I hear a higher pitch!”

“I hear a lower pitch!”

beep! beep!

(Compressed sound waves)

beep! beep!

beep! beep!

(Expanded sound waves)

FIGURE 19.2
The Doppler effect.

How We Perceive Sound
You probably noticed I used the word perceive in that last paragraph. Sound, and any
sense really, is all about perception. The Doppler effect is only evident for the stationary
person, if you refer back to my idealized scenario in Figure 19.2. The person driving
the car will hear essentially the same horn sound in every case. But we perceive more
than frequency shifts—we also perceive direction, as well as volume (sound intensity or
rolloff) and can apply many filters (and I’m not referring to “selective hearing”, which my
children sometimes employ). Our sense of hearing is somewhat akin to our stereoscopic
sight. We have two eyes not only for redundancy, but also to perceive depth. In a similar
manner, we have two ears to perceive spatial sounds. If a bee flies behind us while we’re
blindfolded, we still know the bee is behind us.

26 1634xCH19 11/13/99 11:13 AM Page 378

Though the actual human auditory perception model is much more complicated than
what I will discuss here, there are four main factors that influence our perception of a
sound’s origin:

� Rolloff
� Intensity difference
� Intensity delay
� Muffling

I discussed rolloff earlier in the hour. But to recap, the closer you are to a sound’s source,
the louder the sound will be. You sense an object’s distance by internally processing
rolloff.

Intensity difference helps you discern from which direction a sound’s origin is placed.
If an object making a sound is to your left, the sound pressure wave will hit your left
ear with slightly more intensity that it will strike your right ear. Your ears are nominally
capable of sensing very small differences in sound pressure.

Just as you are able to sense differences in sound intensity, you are able also to sense
differences in sound timing. Using my previous example, the sound would strike your
left ear slightly before it would strike your right ear. Your brain interprets this intensity
delay to also help place an object’s origin in 3D space.

Finally, your ears are designed to focus your listening attention to sounds emanating
from in front of your current spatial position. Clearly, though, sounds can come from
somewhere behind you. To help you decide if the sound comes from in front or behind
you, your ears muffle sounds from behind. Your brain then interprets muffled sounds as
originating from behind you.

Your brain interprets all these incoming cues and applies to them a mathematical trans-
formation using a formula known as the head-related transfer function. Of course, your
transfer function is likely very different from my own because our heads are not shaped
the same, our ears are not located in the same places on our heads, and so on. But the
process we go through to interpret the sound and its location is very similar.

3D Sound—From Panning to Doppler Effects 379

19

The single most important cue you can provide your user, however, is to
make sure that the visual object you are rendering holds a spatial location
similar to the spatial location of the sound you are generating at the time.
If your spaceship moves to the left at such-and-such a velocity, your sound
cues must closely match the motion of the spaceship.

26 1634xCH19 11/13/99 11:13 AM Page 379

The four factors I just mentioned are the major design factors behind DirectSound3D.
You have to make sure that your visual objects are tied adequately to your aural ones.
And nobody can help you if your head-related transfer function only processes polkas!
In any case, before you begin writing DirectSound3D code, I’ll briefly touch on the
architectural differences between 2D and 3D DirectSound.

The Architecture of DirectSound3D
You examined DirectSound in some detail in Hour 6, and I even briefly described there
the interfaces you’ll be using here. So the basic architecture of DirectSound3D is very
much the same as the 2D version. You’re still using DirectSound.

The major difference is DirectSound3D doesn’t use IDirectSoundBuffer. Instead,
because you will be applying several dynamic sound filters to your sound buffer,
DirectSound3D employs the IDirectSound3DBuffer interface. Essentially, the
IDirectSound3DBuffer interface allows you to set additional parameters related to
your sound’s spatial location and tone. The other main difference is DirectSound3D adds
the notion of a listener. It is the listener’s perception of the sound that counts the most
when using spatial sound. For this, DirectSound3D uses the IDirectSound3DListener
interface. It is through these interfaces that you will adjust the sound parameters to truly
make the sounds move in space, at least as far as your users are concerned. I’ll discuss
each of these interfaces and how you use them in the next section.

DirectSound 3D Components
As I’ve mentioned, spatial sounds require both a sound source, simulated by the sound
buffer, and a sound sink. The specialized 3D sound buffer, IDirectSound3Dbuffer,
enables you to provide a motion cue to your sound source and filter the aural signatures
of the sounds DirectSound will generate. The sound sink, which is ultimately your user, is
represented in DirectSound3D by IDirectSound3DListener. IDirectSound3DListener is
used to apply Doppler Shift and rolloff, just as if the listener were truly in the simulation.
I’ll begin by describing IDirectSound3DBuffer, and then I’ll discuss
IDirectSound3DListener.

DirectSound 3D Buffers
Because you are using a variation of DirectSound, all that you learned from Hour 6
applies here. You create your DirectSound object in the same manner and query for its
various interfaces just as you did before. However, to obtain an IDirectSound3DBuffer
versus an IDirectSoundBuffer interface, you must create your sound buffer slightly
differently. Before I show how this is done, take a look at the methods
IDirectSound3DBuffer provides:

380 Hour 19

26 1634xCH19 11/13/99 11:13 AM Page 380

� GetAllParameters()

� SetAllParameters()

� GetMaxDistance()

� GetMinDistance()

� SetMaxDistance()

� SetMinDistance()

� GetMode()

� SetMode()

� GetPosition()

� SetPosition()

� GetConeAngles()

� GetConeOrientation()

� GetConeOutsideVolume()

� SetConeAngles()

� SetConeOrientation()

� SetConeOutsideVolume()

� GetVelocity()

� SetVelocity()

� AddRef()

� QueryInterface()

� Release()

As you can see, IDirectSound3DBuffer is very different from IDirectSoundBuffer.The
good news is IDirectSound3Dbuffer inherits the capabilities of IDirectSoundBuffer,
and so all the things you could do with a sound buffer in 2D you can also do in 3D.
IDirectSound3DBuffer enhances the capabilities of sound buffer management rather than
replaces the functionality you’ve come to expect. Knowing this, it’s time to see how you
create a 3D sound buffer.

Creating the Buffers
As you saw in Hour 6, you use the DirectSound API method CreateSoundBuffer() to
obtain a new sound buffer (and you’ll require a new sound buffer for every sound you
intend to generate). To reiterate, though, here is the method signature:

HRESULT CreateSoundBuffer(LPCDSBUFFERDESC lpcDSBufferDesc,
LPLPDIRECTSOUNDBUFFER lplpDirectSoundBuffer, IUnknown FAR * pUnkOuter);

3D Sound—From Panning to Doppler Effects 381

19

26 1634xCH19 11/13/99 11:13 AM Page 381

So far, there’s no difference. The trick is to add a parameter to the DSBUFFERDESC
structure before you make the CreateSoundBuffer() call. As you know, you set the
dwFlags attribute to tailor the capabilities of the buffer you are requesting. In this case,
you add the DSBCAPS_CTRL3D flag and specify a 3D processing algorithm. This code
would initialize the DSBUFFERDESC structure for 3D sound:

DSBUFFERDESC dsbd;
ZeroMemory(&dsbd, sizeof(DSBUFFERDESC));
dsbd.dwSize = sizeof(DSBUFFERDESC);
dsbd.dwFlags = DSBCAPS_STATIC |

DSBCAPS_CTRL3D |
DSBCAPS_CTRLFREQUENCY |
DSBCAPS_CTRLVOLUME |
DSBCAPS_CTRLPAN;

dsbd.dwBufferBytes = dwSoundSize; // set on a per-sound basis
dsbd.lpwfxFormat = dwSoundFormat; // set on a per-sound basis
dsbdDesc.guid3DAlgorithm = GUID_NULL; // or DS3DALG _DEFAULT

In this case, you’re asking for a static 3D sound buffer with volume, panning, and
frequency control capability that will use the default 2-speaker virtualization algorithm.
After you initialize this structure and pass it to CreateSoundBuffer(), you simply query
for IDirectSound3DBuffer:

// Note pDSB is returned from CreateSoundBuffer()
LPDIRECTSOUND3DBUFFER pDS3DB = NULL;
pDSB->QueryInterface(IID_IDirectSound3DBuffer, (LPVOID*)&pDS3DB;

Now you have both an IDirectSoundBuffer and an IDirectSound3DBuffer interface
pointer with which you can manipulate your sound’s characteristics. Knowing this, it’s
time to examine the capabilities of IDirectSound3DBuffer more closely.

382 Hour 19

If you’re using DirectX 7 but want compatibility with DirectX 6.1, you should
use the DSBUFFERDESC1 structure to create your sound buffers. DirectX 6.1
has no concept of 2-speaker virtualization.

DirectX 7.0 has eliminated the DSBCAPS_CTRLDEFAULT buffer flag, which
was formerly available in DirectX 6.1. Instead, you should use the individual
flags DSBCAPS_CTRL3D, DSBCAPS_CTRLFREQUENCY, DSBCAPS_CTRLPAN, and
DSBCAPS_CTRLVOLUME.

26 1634xCH19 11/13/99 11:13 AM Page 382

Establishing Sound Characteristics
Sounds have characteristics just as visual objects do. That is, a visual object might
appear to be green with scales (and chasing you!). Well, a sound might be directional
and be emitted from a moving source (the green monster is growling at you). In this
section, I want to concentrate on sound parameter batch mode processing and the con-
cept of directional sound. In a later section, you’ll examine the buffer’s processing mode,
which is related to how DirectSound3D actually applies the filters to the buffer to create
differing effects.

You’ll often find it the case when programming for low-latency, as you do when writing
game code, that setting individual parameters can be costly. That is, if you have some
arbitrary object that requires five parameters to be established prior to using the object,
you would normally have to make five separate method calls to initialize the object for
use. If setting a parameter is expensive (from the object’s processing perspective), it
makes sense to change parameters rarely. It’s best if you can pack as much parameter
modification into a single call.

Enter batch parameter processing. By using
IDirectSound3DBuffer::GetAllParameters() and
IDirectSound3DBuffer::SetAllParameters(), you can effectively set any 3D sound
buffer parameter entirely at once. These two methods use the DS3DBUFFER
DirectSound3D structure, defined as such:

typedef struct {
DWORD dwSize;
D3DVECTOR vPosition;
D3DVECTOR vVelocity;
DWORD dwInsideConeAngle;
DWORD dwOutsideConeAngle;
D3DVECTOR vConeOrientation;
LONG lConeOutsideVolume;
D3DVALUE flMinDistance;
D3DVALUE flMaxDistance;
DWORD dwMode;

} DS3DBUFFER, *LPDS3DBUFFER;

When you establish new parameters, you also have the option of specifying when they
should be applied. You might choose to have them applied immediately, or you might
defer their effects until a later time. These constants are used to tell DirectSound3D
when to apply the changes:

� DS3D_DEFERRED

� DS3D_IMMEDIATE

3D Sound—From Panning to Doppler Effects 383

19

26 1634xCH19 11/13/99 11:13 AM Page 383

Note if you use DS3D_DEFERRED, you must call the IDirectSound3DListener::
CommitDeferredSettings() method to have the changes applied. All deferred settings
will be enacted at that time. The advantage to deferring the change in settings is you can
defer the lengthy recalculations that will likely take place as a result of the parameter
change. You will generally want to have more control over lengthy calculations than less!

I’ll leave the positional and velocity parameter values for the next section. Instead, I’ll
now concentrate on directional sound. Some sound sources are omnidirectional. That is,
they emanate sound in all directions at once, like an explosion. Other sounds, though,
have a directional component, such as spoken voice. When you speak, your voice is
directed from your mouth towards the listener. True, others nearby will hear your voice,
but the bulk of the sound energy travels in a line from your mouth to your listener’s ear.

You can imagine directional sound travelling as if it were in a conic section. Sound
energy within the conic section is not attenuated (rolloff is not applied). Sound energy
outside this cone is attenuated (its energy is decreased) until no energy remains and the
sound is not heard. DirectSound3D provides for this effect by allowing you to set each
of two conic sections. The first section, the inner cone, has no attenuation applied. The
inner cone is contained by an outer cone, outside of which no sound is heard. Between
the two conic sections, the sound is attenuated. Figure 19.3 depicts this.

384 Hour 19

“Hi!”

“Hello!”

“What?”

Inner core

Outer core

FIGURE 19.3
Directed sound and
inner and outer cones.

When you create a DirectSound3D sound buffer, all sounds are omnidirectional. In
effect, the inner cone and outer cone emanate 360 degrees and are essentially the same
cone. If your application requires a more directed sound, you might change the default
conic section values and apply directed sound qualities to your sound buffer. To do this,
you can either use the batch parameter processing methods I mentioned earlier, or you
could use the targeted parameter methods IDirectSound3DBuffer::GetConeXXXX()
and IDirectSound3DBuffer::SetConeXXXX(), where XXXX represents the particular
parameter in question.

26 1634xCH19 11/13/99 11:13 AM Page 384

Setting Buffer Location and Velocity
You might or might not require directed sound, but if you’re programming 3D sound,
you surely will want to establish the sound’s location and velocity. If both the object
and the listener are in motion, you’ll probably want to set the buffer processing mode
to DS3DMODE_HEADRELATIVE to make your calculations somewhat simpler. You’ll see this
a bit later in the hour. For now, it’s time to address a sound’s location and velocity.

Setting the sound’s position and velocity is a simple matter. You either establish
them using the batch parameter processing methods I described earlier, or you
call the individual methods IDirectSound3DBuffer::Get/SetVelocity() and
IDirectSound3DBuffer::Get/SetPosition(). What makes things interesting is the
value passed to these methods is a vector quantity. That is, you must provide enough
spatial information to properly place the sound in 3D space and describe its motion. You
might remember that I introduced the D3DVECTOR structure in Hour 10, “Introduction to
3D Objects,” and discussed the reasoning behind the use of vectors in 3D space. That
same reasoning applies in this case as well.

When you work with the sound’s positional value, the vector you are dealing with repre-
sents the location of the sound’s object in either absolute world coordinates (from the
origin) or as a relative displacement from the listener. The processing mode you select
determines this. As with all parameters, when you set a new position, you supply not
only the vector, but you also must tell DirectSound3D when to apply the modification
(as I discussed earlier).

The sound’s velocity is actually used to calculate the appropriate Doppler shift relative
to the given listener. This is an important point—the velocity value is not used to move
the buffer in 3D space! The value you set here is used for Doppler calculations only.

3D Sound—From Panning to Doppler Effects 385

19

Setting the buffer’s velocity affects the Doppler Shift calculations only. The
buffer is not moved! To move the buffer in 3D space, you simply adjust the
positional value according to your object’s equations of motion.

The value you supply for distance units is assumed to be in meters. If you’re interested
in working with other values, such as feet, you must calculate the appropriate conversion
value and provide that to the IDirectSound3DListener::SetDistanceFactor() method.
Note, however, that internally DirectSound3D will still use meters as the unit of measure-
ment. It will merely apply your conversion factor as required to properly calculate the
sound’s location in 3D space.

26 1634xCH19 11/13/99 11:13 AM Page 385

Now that you have a 3D sound buffer and know how to manipulate its parameters, it’s
time you were introduced to the listener. Something ought to hear your sounds after all
this work!

DirectSound 3D Listener
If a tree falls in the woods, does it make a sound? If you’re there to hear it, it sure does.
And that’s the point—without someone to hear the sound, who cares (except for the tree,
of course)? That’s where the DirectSound3D listener comes in. The DirectSound3D lis-
tener acts as your user’s avatar in your game. Through the listener object, you place your
user within your 3D realm and manipulate the acoustics to enhance the realism of the
play. I’ll now go over the IDirectSound3DListener interface and describe how you use
it to achieve stellar audio effects.

Creating the Listener
DirectSound by itself has no concept of a listener—you merely play sounds and control
sound timing. So when you enter the 3D world, you have more work to do. And so it is
with creating the listener. All I have discussed regarding DirectSound and the enhance-
ments IDirectSound3DBuffer makes still apply. But in this case, you have the additional
tasks of creating another DirectX object and managing its lifetime.

Creating the listener is a simple matter, however. After you have created your primary
sound buffer using IDirectSound::CreateSoundBuffer(), you query for the listener.
Here is an example:

DSBUFFERDESC dsbd;
ZeroMemory(&dsbd, sizeof(DSBUFFERDESC));
dsbd.dwSize = sizeof(DSBUFFERDESC);
dsbd.dwFlags = DSBCAPS_CTRL3D|DSBCAPS_PRIMARYBUFFER;

// pDS is a LPDIRECTSOUND pointer created earlier
LPDIRECTSOUNDBUFFER pdsbPrimary = NULL;
if(FAILED(pDS->CreateSoundBuffer(&dsbd, &pdsbPrimary, NULL)))

return E_FAIL;

LPDIRECTSOUND3DLISTENER pdslListener = NULL;
if(FAILED(pdsbPrimary->QueryInterface(IID_IDirectSound3DListener,

(LPVOID*)&pdslListener)))
return E_FAIL;

The thing to note here is the primary sound buffer is created using the same
DSBCAPS_CTRL3D flag you saw earlier. If you forget this, you won’t obtain a listener
interface. Assuming that you do have a listener interface, I’ll now list the methods
the interface provides, and then I’ll discuss how you use them. Here are the
IDirectSound3DListener methods:

386 Hour 19

26 1634xCH19 11/13/99 11:13 AM Page 386

� GetAllParameters()

� SetAllParameters()

� CommitDeferredSettings()

� GetDistanceFactor()

� SetDistanceFactor()

� GetDopplerFactor()

� SetDopplerFactor()

� GetOrientation()

� SetOrientation()

� GetPosition()

� SetPosition()

� GetRolloffFactor()

� SetRolloffFactor()

� GetVelocity()

� SetVelocity()

� AddRef()

� QueryInterface()

� Release()

As you see, you have methods similar to those of IDirectSound3DBuffer, in
that you have batch parameter processing capability, or you can set individual
parameters at will, depending on your needs at the time. You can also see the
IDirectSound3Dlistener::CommitDeferredSettings() method I mentioned
for processing all your stored batch parameters.

Doppler and Rolloff Settings
The reason you’ve gone to the trouble you have to provide for spatial sounds in your
game is you want to enhance the realism for your user when he plays. This is directly
coupled with the physics of sound I covered earlier. In our daily lives, we use many
aural cues to position sounds within our perception of reality. Computers, however,
have to create those sounds using, at best, stereophonic equipment. To simulate 3D
sounds, DirectSound3D provides sound filtering capabilities, the primary of which
are for Doppler effects and rolloff. This is your big chance!

Now that you have an IDirectSound3Dlistener DirectSound3D object, you can begin
to apply real-world effects. As I discuss Doppler effects and rolloff, remember that
Doppler effects simulate motion, whereas rolloff simulates distance.

3D Sound—From Panning to Doppler Effects 387

19

26 1634xCH19 11/13/99 11:13 AM Page 387

First, I will discuss Doppler effects. Given a sound object/listener pair, DirectSound3D
will automatically calculate for you the Doppler effect present between the pair when
either or both have velocities established. You are free to change the manner in which
the Doppler shift is calculated by using the IDirectSound3Dlistener::Get/SetDoppler
Factor() methods (or by dealing them in a batch). Note that Doppler effects are cumula-
tive. That is, if either or both of the pair is moving, DirectSound3D will adjust the
Doppler effect heard by the listener automatically. Any global additions (or subtractions)
you make by setting a new Doppler factor will be taken into account when the parameter
is changed.

The trick to all this is to determine how your objects are moving and set their respective
DirectSound3D velocities accordingly. I discussed the buffer’s velocity setting earlier,
and I’ll address the listener’s velocity setting in the next section. Without motion, there
is no Doppler effect! How the sound will be perceived depends on how you move these
objects. Changing the overall Doppler setting can enhance or retard the Doppler effect
globally.

The Doppler value you use will range between these values:

� DS3D_MINDOPPLERFACTOR

� DS3D_MAXDOPPLERFACTOR

DS3D_MINDOPPLERFACTOR is currently defined to be 0.0, whereas DS3D_MAXDOPPLERFACTOR
is currently defined to be 10.0. Using a value of DS3D_MINDOPPLERFACTOR indicates no
Doppler effects will be calculated. A value of 1.0, defined as DS3D_DEFAULTDOPPLERFACTOR,
indicates real-world Doppler shifts are to be used. Any value greater than DS3D_DEFAULT-
DOPPLERFACTOR (up to DS3D_MAXDOPPLERFACTOR) compounds the Doppler effect. If you set
the Doppler factor setting to DS3D_MAXDOPPLERFACTOR, what you are requesting is that you
want 10 times the Doppler effect to be heard than would be heard
in a real-world scenario.

So much for Doppler effects. I’ll now turn to discussing rolloff. You adjust the rolloff fac-
tor to indicate relative distance between the object generating the sound and the listener.
Dealing with rolloff is very much like dealing with the Doppler effects. DirectSound3D
will calculate for you the nominal rolloff based on object positions, but you’re free to
adjust that by setting a new rolloff factor value using the batch methods or by using
IDirectSound3Dlistener::Get/SetRolloffFactor(). And, like Doppler effects, rolloff
has a predefined range and default setting. The range values are defined in this manner:

� DS3D_MINROLLOFFFACTOR

� DS3D_MAXROLLOFFFACTOR

388 Hour 19

26 1634xCH19 11/13/99 11:13 AM Page 388

You use these values in the same manner as Doppler effects, and the default value
DS3D_DEFAULTROLLOFFFACTOR is the same numerical value (1.0). Rolloff values of less
than 1.0 (but greater than 0.0) indicate the sound will carry abnormally further than in
a real-world setting. A rolloff factor of greater than 1.0 means that the sounds will be
muted in a much shorter distance than in the real world. And remember, the setting you
use here is a multiplicative factor, so a setting of DS3D_MAXROLLOFFFACTOR would mean
the rolloff is ten times more severe than you would find in the real world.

Setting Listener Position and Velocity
You’ve already seen how to change the sound buffer’s position and velocity, and it might
not be surprising to find the listener reacts in the very same fashion. You’re always free
to set the parameters in a batch scenario, or you can use the individual methods designed
for each parameter. Regarding position, you would use IDirectSound3Dlistener::Get/
SetPosition(). For velocity, you would use IDirectSound3Dlistener::Get/
SetVelocity(). And like the sound buffer, the velocity term doesn’t refer to the motion
of the listener but rather to the velocity used to calculate the Doppler effect. To simulate
the motion of the listener, you continuously set the position value according to the
equations of motion you’ve defined for your listener object.

3D Sound—From Panning to Doppler Effects 389

19

As with the buffer, setting the listener’s velocity affects the Doppler shift cal-
culations only. The listener itself is not moved! To move the listener in 3D
space, you adjust the positional value according to your object’s equations
of motion.

The positional and velocity values are initially set to be in meters and meters per second,
respectively. You might remember that I mentioned the IDirectSound3DListener::
SetDistanceFactor() method when I discussed these parameters regarding sound
buffers. To reiterate, you can easily change the distance factor by supplying a new
conversion value (from meters to feet, for example). You might find this handy in some
situations.

The major difference between the sound buffer object and the listener is the listener has
an orientation. Orientation refers to how the listener’s head is canted, either up or down,
as shown in Figure 19.4. When you hear sounds, the sound pressure levels will be greater
if you look directly towards the sound’s source than if you are looking 90 degrees above
it. DirectSound3D takes this into account when making its filter calculations.

26 1634xCH19 11/13/99 11:13 AM Page 389

Orientation is established in terms of two vectors, the top vector and the front vector.
If the listener is oriented normally, the top vector points upwards and the front vector
points out of the front of their face. In this case, the top vector would be (0.0, 1.0, 0.0)—
all y-axis. Similarly, the front vector defaults to (0.0, 0.0, 1.0), or all z-axis. If the lis-
tener’s head tilted back 45 degrees, both the top and front vectors would change
accordingly. The top and front vectors would change in terms of the YZ plane (this
assumes that the listener’s head doesn’t also turn as it tilts, which would introduce an
X term). The new top vector would be

(0.0, sin(45), -cos(45))

The new front vector would then become

(0.0, sin(45), cos(45))

Figure 19.5 should help clarify my calculations.

390 Hour 19

Z

X

Y

Top

Front

FIGURE 19.4
DirectSound3D
orientation and vectors
(initial setting).

Z

X

Y

Top Front

cos 45˚

sin 45˚45˚

FIGURE 19.5
45 degree canted
orientation and
resulting vectors.

26 1634xCH19 11/13/99 11:13 AM Page 390

When you have your orientation vector, you use the IDirectSound3Dlistener::Get/
SetOrientation() methods to put it into effect. Note the vectors must be orthogonal;
that is, they must form a right angle to each other. If you miscalculate one or the other,
DirectSound3D will adjust the front vector to be orthogonal with the top vector—the top
vector takes priority.

Processing 3DSound
I elected to defer discussion of the processing mode until this point because it is impor-
tant to understand the basics of both the DirectSound3D buffer and listener objects when
dealing with mode settings. As it happens, you have the capability to set the buffer’s
sound processing mode. That is, you can turn off 3D sound entirely, control the sound
via the listener object (and have the buffer update its parameters accordingly for you), or
manipulate the buffer parameters yourself. The IDirectSound3DBuffer::GetMode() and
IDirectSound3DBuffer::SetMode() methods use a single parameter from this list:

� DS3DMODE_DISABLE

� DS3DMODE_HEADRELATIVE

� DS3DMODE_NORMAL

DS3DMODE_DISABLE simply does as it claims—3D sound processing is disabled.
DS3DMODE_HEADRELATIVE puts DirectSound3D into a mode in which you are able to
maneuver the listener and have DirectSound3D automatically update the parameters
for the buffer. This enables the buffer’s absolute sound parameters to be automatically
set, based on listener parameters, so that the relative settings between the sound object
and the listener are constant. And DS3DMODE_NORMAL simply sets the processing mode to
require you to manage both the object’s and the listener’s parameters, respectively, using
absolute coordinate values.

The reason the processing mode is so important is the calculations involved with placing
the sound object and the listener, as well as determining their velocities (for Doppler
effects, anyway), can be quite involved. DirectSound3D makes you an offer you can’t
easily refuse! DirectSound3D will manage the calculations for the sound object for you,
if you want. This is a good deal because it saves you time and processor cycles. True, the
calculations still must be made to determine the relative velocities between the objects,
but those calculations will be made using optimized DirectSound3D code rather than
code you had to write and test. That’s a bargain, believe me.

Adding DirectSound 3D to Your Application
In this section, you will learn how to add 3D sound to the application you’ve been
building along the way. As you remember from previous work, the siren sound seemed
to go from left to right (or right to left) and would fade in the distance. You simulated

3D Sound—From Panning to Doppler Effects 391

19

26 1634xCH19 11/13/99 11:13 AM Page 391

this effect by panning (the movement) and by controlling the volume (less volume
at distant points). When you add 3D effects, none of this is necessary. In the 3D case,
DirectSound3D handles the rolloff for you, which replaces the volume work you did,
and the apparent motion of the sound is handled by setting the buffer’s 3D position,
which eliminates the panning. I’ll begin by creating the listener object.

Creating the Listener
Listener creation is really a three-step process. You first create a primary sound buffer;
then you query the resulting buffer for the listener; and finally, you initialize the listener.
To help with these three steps, I created two rather simple helper functions,
create_3dlistener() and init_3deffects().

create_3dlistener(), shown in Listing 19.1, creates the primary sound buffer and
queries it for the IDirectSound3DListener interface, very much as you saw earlier in
the chapter.

LISTING 19.1 Code That Creates a 3D Listener Object

1: //------ Function to create the 3D listener interface ------//
2:
3: BOOL create_3dlistener()
4: {
5: // Setup the DS buffer description
6: DSBUFFERDESC dsbdDesc;
7: ZeroMemory(&dsbdDesc, sizeof(DSBUFFERDESC));
8: dsbdDesc.dwSize = sizeof(DSBUFFERDESC);
9: dsbdDesc.dwFlags = DSBCAPS_PRIMARYBUFFER | DSBCAPS_CTRL3D;
10: dsbdDesc.guid3DAlgorithm = DS3DALG_DEFAULT;
11:
12: // Create the DS buffer
13: if (lpDS->CreateSoundBuffer(&dsbdDesc,
14: &lpDSPrimary, NULL) != DS_OK)
15: {
16: ErrStr = Err_CreateBuff;
17: return FALSE;
18: }
19:
20: if (lpDSPrimary->QueryInterface(IID_IDirectSound3DListener,
21: (LPVOID*)&lpDS3DListener) !=
22: DS_OK)
23: {
24: ErrStr = Err_Create3DList;
25: return FALSE;
26: }
27:
28: return TRUE;
29: }

392 Hour 19

26 1634xCH19 11/13/99 11:13 AM Page 392

If any part of this fails, the FALSE return value will cause the application to terminate with
an appropriate error message shown in a message box. After I call create_3dlistener(),
I call the second helper function, init_3deffects(). init_3deffects() is shown in
Listing 19.2.

LISTING 19.2 Code That Initializes the 3D Objects

1: //------ Function to initialize the 3D objects -----//
2:
3: BOOL init_3deffects()
4: {
5: // First, the listener
6: DS3DLISTENER dsListenerParms;
7: ZeroMemory(&dsListenerParms, sizeof(DS3DLISTENER));
8: dsListenerParms.dwSize = sizeof(DS3DLISTENER);
9:
10: // Retrieve current parameters for later modification
11: if (FAILED(lpDS3DListener->GetAllParameters(&dsListenerParms)))
12: {
13: ErrStr = Err_Create3DParm;
14: return FALSE;
15: }
16:
17: // Modify the current parameters
18: dsListenerParms.flDopplerFactor = DS3D_DEFAULTDOPPLERFACTOR;
19: dsListenerParms.flRolloffFactor = DS3D_DEFAULTROLLOFFFACTOR;
20: if (FAILED(lpDS3DListener->SetAllParameters(&dsListenerParms,

DS3D_IMMEDIATE)))
21: {
22: ErrStr = Err_Create3DList;
23: return FALSE;
24: }
25:
26: // Then, the buffer
27: DS3DBUFFER dsBufferParms;
28: ZeroMemory(&dsBufferParms, sizeof(DS3DBUFFER));
29: dsBufferParms.dwSize = sizeof(DS3DBUFFER);
30:
31: // Retrieve current parameters for later modification
32: if (FAILED(lpDS3DBSiren->GetAllParameters(&dsBufferParms)))
33: {
34: ErrStr = Err_Create3DParm;
35: return FALSE;
36: }
37:
38: // Modify the current parameters
39: dsBufferParms.flMinDistance = DS3D_DEFAULTMINDISTANCE;
40: dsBufferParms.flMaxDistance = DS3D_DEFAULTMAXDISTANCE;
41: dsBufferParms.dwMode = DS3DMODE_HEADRELATIVE;

3D Sound—From Panning to Doppler Effects 393

19

continues

26 1634xCH19 11/13/99 11:13 AM Page 393

42: if (FAILED(lpDS3DBSiren->SetAllParameters(&dsBufferParms,
DS3D_IMMEDIATE)))

43: {
44: ErrStr = Err_Create3DBuff;
45: return FALSE;
46: }
47:
48: return TRUE;
49: }

As you see, init_3deffects() also initializes the buffer, the creation of which you’ll
see in an upcoming section. When these functions do their job, you’re ready for 3D
sound!

Loading Sounds
Loading the sound data is nearly the same as before. The main difference is you must
supply the 2-speaker virtualization algorithm identifier I mentioned previously. This
applies to the DSBUFFERDESC structure created in load_sounds(), which should be
changed to this:

// Setup the DS buffer description
DSBUFFERDESC dsbdDesc;
ZeroMemory(&dsbdDesc, sizeof(DSBUFFERDESC));
dsbdDesc.dwSize = sizeof(DSBUFFERDESC);
dsbdDesc.dwFlags = DSBCAPS_STATIC |

DSBCAPS_CTRL3D |
DSBCAPS_CTRLFREQUENCY |
DSBCAPS_CTRLPAN |
DSBCAPS_CTRLVOLUME;

dsbdDesc.dwBufferBytes = dwDataLen;
dsbdDesc.lpwfxFormat = &wfFormat;
dsbdDesc.guid3DAlgorithm = GUID_NULL;

Because you’re using secondary sound buffers, you must provide GUID_NULL as the
algorithm’s identifier.

Creating the 3D Buffer
Because the helper function approach worked so well for creating the 3D listener object,
I used the same approach for creating the 3D sound buffer, which will be used to contain
the siren sound. create_3dbuffer() very simply queries the siren’s IDirectSoundBuffer
interface for the IDirectSound3DBuffer interface and returns TRUE if it was successful.
See Listing 19.3 for the details.

394 Hour 19

LISTING 19.2 continued

26 1634xCH19 11/13/99 11:13 AM Page 394

Listing 19.3 Code That Creates the 3D Buffer Object

1: //------ Function to create the 3D buffer ------//
2:
3: BOOL create_3dbuffer()
4: {
5: if (lpDSBSounds[0]->QueryInterface(IID_IDirectSound3DBuffer,
6: (LPVOID*)&lpDS3DBSiren) !=
7: DS_OK)
8: {
9: ErrStr = Err_Create3DBuff;
10: return FALSE;
11: }
12:
13: return TRUE;
14: }

Note that I had to add an additional global IDirectSound3DBuffer interface pointer vari-
able (lpDS3DBSiren) to contain the 3D buffer’s interface pointer. If this function fails, as
with the 3D listener, the application will terminate and an error message will be displayed.

Animating Sound Effects
The animation of the siren sound effect is handled by changing the sound buffer’s posi-
tion and updating its velocity, as I described earlier in the hour. If the siren is playing, I
check its current position. If it’s out of bounds, I turn the siren off. However, if it’s in
bounds, I add a small positional increment and call IDirectSound3Dbuffer::
SetPosition(), as you see in Listing 19.4. I set the velocity depending on the direction
the object is travelling. If the object started on one side of the listener and has not passed
the listener, the velocity is set to one value (-25.0 in this case). After the object passes
the listener, another velocity value is set (2.5). This provides for a great Doppler effect.

LISTING 19.4 Code That Animates the Siren Sound Effect

1: // If siren sound is playing, see if we should stop it
2: lpDSBSounds[0]->GetStatus(&dwStatus);
3: if (dwStatus & DSBSTATUS_LOOPING)
4: {
5: // Give it some distance for rolloff
6: if ((lSirenPos < -200000) || (lSirenPos > 200000))
7: lpDSBSounds[0]->Stop();
8: else
9: {

3D Sound—From Panning to Doppler Effects 395

19

continues

26 1634xCH19 11/13/99 11:13 AM Page 395

10: // Bump our position
11: lSirenPos += lSirenPosInc;
12:
13: // Change velocity (left to right or right to left)
14: lpDS3DBSiren->SetVelocity((lSirenPos*lStart) > 0 ? -25.0 : 2.5,

1.5, 0.0, DS3D_IMMEDIATE);
15:
16: // Set new position
17: lpDS3DBSiren->SetPosition((double)lSirenPos/10000.0,

1.5, 0.0, DS3D_IMMEDIATE);
18: }
19: }

That’s all there is to it. DirectSound3D manages the rest!

Release Interfaces
Releasing the DirectSound3D interfaces when the application terminates is handled
in the same manner in which all the other DirectX interfaces are released. You call
Cleanup() when you receive the WM_DESTROY Windows message. In this case, though, I
added the release code for the 3D interfaces. The enhanced Cleanup() function is shown
in Listing 19.5.

LISTING 19.5 Code That Releases All the DirectX Objects

1: //------ Cleanup Function to Release Objects ------//
2:
3: #define SafeRelease(x) if (x) { x->Release(); x=NULL;}
4:
5: void Cleanup()
6: {
7: // release loaded image surfaces
8:
9: SafeRelease(back1_surf);
10: SafeRelease(back2_surf);
11: SafeRelease(int_surf);
12: SafeRelease(ground_surf);
13: SafeRelease(light_surf);
14: SafeRelease(taxi_surf);
15:
16: // release DirectDraw interfaces
17:
18: SafeRelease(lpDDSPrimary);
19: SafeRelease(lpDD);
20:
21: // release DirectSound3D interfaces
22:

396 Hour 19

LISTING 19.4 continued

26 1634xCH19 11/13/99 11:13 AM Page 396

23: SafeRelease(lpDS3DBSiren);
24: SafeRelease(lpDS3DListener);
25:
26: // release sound buffer interfaces
27:
28: for (int i = 0; i < NUMSOUNDS; i++)
29: {
30: SafeRelease(lpDSBSounds[i])
31: }
32:
33: // release DirectSound interfaces
34:
35: SafeRelease(lpDSPrimary);
36: SafeRelease(lpDS);
37:
38: // release DirectInput interfaces
39:
40: if (pKeyboard)
41: {
42: pKeyboard->Unacquire();
43: pKeyboard->Release();
44: pKeyboard = NULL;
45: }
46: SafeRelease(lpDI);
47:
48: // display error if one thrown
49:
50: if (ErrStr) {
51: MessageBox(NULL, ErrStr, szCaption, MB_OK);
52: ErrStr=NULL;
53: }
54: }

I bolded the relevant code to make the changes easier for you to see.

Summary
Now that you’ve finished this hour, load your favorite game and give it a spin. But this time,
turn off your computer’s sound and play. Not quite as exciting, is it? It isn’t enough to have
a compelling visual system, even if it is as rich as many of today’s top games are. As a game
player, you simply must have the aural inputs to make the game interesting and fun to play.
With this hour, I’ve taken you a step further into increasing the reality your users will enjoy
when they play your creation. You’ve learned how to add basic sounds in Hour 6 and inter-
active music streams in Hour 8, “DirectMusic—Interactive Music,” and with this hour you
cap off your sound generation skills toolbox by adding the third dimension to your work.
The good news is this is something that will set your product apart from most of today’s
game offerings. Try these techniques and technologies—I think you’ll be pleased.

3D Sound—From Panning to Doppler Effects 397

19

26 1634xCH19 11/13/99 11:13 AM Page 397

Q&A
Q Sometimes when I try my game on different computers, it crashes. When I ran

the same game in a debugging configuration, I found it crashed when I tried
to create a sound buffer (the crash resulted in an access violation, error
0xC0000005). Why is this so?

A The DirectSound driver you are using doesn’t support 3D. Either you are using
Windows NT, there is no driver present, or the driver you selected isn’t the best
driver available to the system (and you should enumerate the drivers and select
another). This should be considered a bug in DirectSound and taken into account
in your game code (perhaps by using exception handling code where appropriate).

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. How is sound created?

2. What five factors influence our perception of sound?

3. Which of the five factors you listed is most critical?

4. Why process DirectSound3D parameter changes in a batch (if possible)?

5. True or false: Setting the sound buffer’s velocity changes its spatial location.

6. True or false: You create the listener object using a secondary sound buffer object.

7. What is rolloff?

8. What is Doppler shift?

9. Must the orientation vectors be at 90 degrees to each other?

10. Can you request DirectSound3D to manage the relative velocities between the
sound buffer and the listener?

Exercises
1. Adjust the Doppler and rolloff values in the sample application. See what happens

when you use values for each that are greater than the default values.

2. Try creating directed sounds by creating the inner and outer conic sections.
See how the sound is affected as you move from the inner to the outer cone; then
outside the outer cone.

398 Hour 19

26 1634xCH19 11/13/99 11:13 AM Page 398

Hour
20 Putting Your Game on the Net—Writing

Multiplayer Titles

21 Game Central—Creating Lobbies

PART VII
DirectPlay

27 1634xPart VII 11/13/99 11:11 AM Page 399

27 1634xPart VII 11/13/99 11:11 AM Page 400

HOUR 20
Putting Your Game on
the Net—Writing
Multiplayer Titles

Up until now, you have learned how to add DirectX features to a game or
application to make it playable by one person or by one person playing
against the computer, perhaps. Most computer games have followed this par-
adigm for quite some time. But, also for some time now, Microsoft has pro-
vided the capability to add multiplayer features to a game with the
DirectPlay portion of DirectX. Currently in its fourth version, DirectPlay
provides an API for you, as game programmer, to add the capability for your
game to be played by more than one human player at a time (and perhaps
even by more than one computer opponent as well).

The DirectPlay API provides functions through a COM object interface,
IDirectPlay4, that enable you to manage game sessions, groups, and play-
ers. You can use these functions to allow your game to look for other players
and games on a network or the Internet, create a player object representing

28 1634xCH20 11/13/99 11:11 AM Page 401

the player in a game, and send game play data between computers. The DirectPlay API
provides some very high-level functions to make it easy for you to manage your game or
player, as well as a few low-level functions intended for you to use to send data specific
to your game to other players.

DirectPlay supports no specific hardware like the Direct3D, DirectDraw, or DirectSound
portions do. DirectPlay will, however, allow your game to take advantage of any network
or modem hardware a player’s computer might have. The DirectPlay architecture is
really “network agnostic”—a game written using DirectPlay can run over two computers
wired directly together, one or more computers on a LAN, or even the Internet.
DirectPlay can even be played over different network protocols, so there is no require-
ment that a user’s computer must have a specific protocol, say TCP/IP, to run your game.
In fact, DirectPlay is designed to let the user decide which protocol or network type con-
nection to use when the game is running, giving you the freedom to focus on worrying
about what type of data your game needs to run instead of what type of network to code
for to carry that data.

During this hour, you will explore the DirectPlay API, as well as learn about different
ways to develop a multiplayer game. Specifically, during this hour, you will learn

• How to establish DirectPlay communications

• About DirectPlay service providers

• How to manage games, players, groups, and game data

• How to manage game state information

• Approaches to minimize network traffic for faster response times

DirectPlay Architecture
DirectPlay, as an API, only provides the interface for you to use to exchange data
between computers and manage games and players. As such, it is a useful tool for you to
use to add multiplayer capabilities to your game. You will still, however, have to make
some choices in how your game is structured—DirectPlay only provides the capabilities.
It’s up to you to decide what kind of data your game will use, and how it will use the
data over the network.

DirectPlay supports two types of game communication models: client-server and peer-to-
peer. Both models have distinct advantages and disadvantages compared to each other,
and the models differ in how game “state” information is stored or transmitted to each
game program.

402 Hour 20

28 1634xCH20 11/13/99 11:11 AM Page 402

In the client/server mode, as you might have guessed, a server is responsible for relaying
game data and state information between participating computers, as well as storing that
state information. This centralized management of such data means that a client only
really needs to worry about relaying and receiving data from one computer—the server,
and not with any of its “neighbors.” In addition, the server computer can provide security
for a game, so players will be required to have an account and provide passwords to par-
ticipate in playing a game. This can be useful if you wanted to charge money for a game
because the game can only be played if you have a valid account on a server and that
account is paid for by the player. An example of a client/server type of DirectPlay game
looks like Figure 20.1.

Putting Your Game on the Net—Writing Multiplayer Titles 403

20

FIGURE 20.1
DirectPlay in a
client/server configura-
tion.

Client

Server

ClientClient

Client

DirectPlay

DirectPlayDire
ctP

lay

Dire
ctP

lay

In contrast, a peer-to-peer DirectPlay game will require that each client maintain state
information about itself as well as for every other player and object in a game. The game
client also must know what information to share with its neighbors, as well as with
whom to share it. Because a player’s state information changes throughout the game, the
changed information must be sent to all the other players participating in that game. A
sample peer-to-peer type of DirectPlay game can be seen in Figure 20.2.

FIGURE 20.2
DirectPlay in a peer-
to-peer configuration.

Client

Client

Client

DirectPlay

DirectPlay

Dire
ctP

lay

28 1634xCH20 11/13/99 11:11 AM Page 403

Peer-to-peer games require no additional hardware support, and the capability for any
game client to be a host can be written into every game client. In other words, only one
piece of software is written—the game. The disadvantage to peer-to-peer games is that
the amount of information to be shared among all the players can possibly overwhelm a
computer or network between the players. A client/server based game, however, can be
used when the player count is high because only one computer needs to have all the state
information, and most of the data traffic flows from client to server.

For the rest of this hour, I will cover the basics of creating a game using the peer-to-peer
model. Developing a client/server based game would require some additional develop-
ment idioms that can’t be covered well in the short hour we have here. The API is the
same for both types of games, so you’ll have an idea of how to use DirectPlay in either
model.

The game state is the type of game data that describes a player’s status at any
point in the game. State information usually includes such data as location,

health, and direction.

DirectPlay, as you might expect from previous hours, relies upon a COM interface,
named IDirectPlay4. This interface houses functions that are related to five main areas:

• Initialization

• Game session management

• Player/group management

• Message management

• Game data transfer

I will go into these specific areas in a few minutes, but in the meantime, it might be help-
ful to look at the entire IDirectPlay4 interface. The IDirectPlay4 interface has the fol-
lowingfunctions:

• AddGroupToGroup()

• AddPlayerToGroup()

• CancelMessage()

• CancelPriority()

• Close()

• CreateGroup()

• CreateGroupInGroup()

• CreatePlayer()

• DeleteGroupFromGroup()

404 Hour 20

NEW TERM

28 1634xCH20 11/13/99 11:11 AM Page 404

• DeletePlayerFromGroup()

• DestroyGroup()

• DestroyPlayer()

• EnumConnections()

• EnumGroupPlayers()

• EnumGroups()

• EnumGroupsInGroup()

• EnumPlayers()

• EnumSessions()

• GetCaps()

• GetGroupConnectionSettings()

• GetGroupData()

• GetGroupFlags()

• GetGroupName()

• GetGroupOwner()

• GetGroupParent()

• GetMessageCount()

• GetMessageQueue()

• GetPlayerAccount()

• GetPlayerAddress()

• GetPlayerCaps()

• GetPlayerData()

• GetPlayerFlags()

• GetPlayerName()

• GetSessionDesc()

• Initialize()

• InitializeConnection()

• Open()

• Receive()

• SecureOpen()

• Send()

• SendChatMessage()

• SendEx()

Putting Your Game on the Net—Writing Multiplayer Titles 405

20

28 1634xCH20 11/13/99 11:11 AM Page 405

• SetGroupConnectionSettings()

• SetGroupData()

• SetGroupName()

• SetGroupOwner()

• SetPlayerData()

• SetPlayerName()

• SetSessionDesc()

• StartSession()

• AddRef()

• QueryInterface()

• Release()

The last three functions, as you should already be aware, are inherited from the IUnknown
interface that every COM-based object inherits from. I won’t cover them further. The rest
of the functions will be dealt with in groups throughout the rest of this hour.

The IDirectPlay4 interface, and its companion, the IDirectPlayLobby3 interface that
you will learn about next hour, supports the notion of using a Unicode or ANSI system.
By asking for a specific type of interface—IDirectPlay4 for Unicode, or
IDirectPlay4A for ANSI—you will be able to use either multibyte Unicode strings or
single byte ANSI strings. The functions are exactly the same for both interfaces, as are
the parameters passed to those functions. The only difference in the two interfaces is
what type of strings are used in the structures passed to and from functions. As I detail
the various structures used as parameters to the IDirectPlay4 interface, you will see that
all the string-based members of those structures are actually of a union type. The union
member used will depend on which interface is being used, and you will see that the
ANSI types of those strings will end in ‘A’. The Unicode strings will have no trailing
character. An example of such a structure is DPNAME, whose prototype follows:

typedef struct {
DWORD dwSize;
DWORD dwFlags;
union {

LPWSTR lpszShortName;
LPSTR lpszShortNameA;

};
union {

LPWSTR lpszLongName;
LPSTR lpszLongNameA;

};
} DPNAME, FAR *LPDPNAME;

406 Hour 20

28 1634xCH20 11/13/99 11:11 AM Page 406

This particular structure is used to name specific entities in DirectPlay, such as a player
or group. Notice that the string for a short and long name in this structure is actually part
of a union. If you use the IDirectPlay4 interface, you would use the lpszShortName
and lpszLongName members. If you were instead using the ANSI interface
IDirectPlay4A, you would use the lpszShortNameA and lpszLongNameA union mem-
bers. For the rest of this hour, we will use the Unicode interface, IDirectPlay4. It might
be helpful for you to use conditional directives in your code, around every place you
might set or retrieve a string, like so:

DPNAME dpName;
dpName.dwSize = sizeof(DPNAME);
#ifdef UNICODE
dpName.lpszShortName = _tcsdup(strShortName);
dpName.lpszLongName = _tcsdup(strLongName);
#else
dpName.lpszShortNameA = _tcsdup(strShortName);
dpName.lpszLongNameA = _tcsdup(strLongName);
#endif

This will allow you to simply create a new Visual C++ target for either ANSI or
Unicode, with which you can define UNICODE to 0 or 1, respectively. Then, all that will
be required for your game to support either standard is a recompile to the correct target.

To start working with the IDirectPlay4 interface, it would be helpful to understand the
notion of a DirectPlay session. Essentially, a session indicates a specific instance of a
game. That is to say, a session represents a game or a round of a game. A session can be
created by a player or server and later be joined by other players interested in getting
involved with the current game.

A session is usually created by the first person who wants to host a game. In the
client/server mode, the session is created by the server, in which case the server might
require new players to provide authentication to join the session. This is called a secure
session, and it is an optional way for the server to create a session. To provide this
authentication, the server is required to be running on Windows NT.

A secure session is a type of session that will require users to provide a valid
username and password to join.

DirectPlay treats the first computer or server to create a session as the session host. It is
possible to also require other players joining a session to provide a password. The ses-
sion host can require this password by setting the lpszPassword string in the DPSESSION-
DESC2 structure passed to IDirectPlay4::Open(). You will learn about this function and
the DPSESSIONDESC2 structure in a few minutes. It is important to note that any session

Putting Your Game on the Net—Writing Multiplayer Titles 407

20
NEW TERM

28 1634xCH20 11/13/99 11:11 AM Page 407

host can create a password-protected session. This differs from a secure session, where a
player must provide accurate username and password information.

The session host is the first computer that creates a session.

Creating a DirectPlay Object
Before we create our DirectPlay object, it is important for you to know about GUIDs.
GUIDs are basically 128-bit values used to uniquely identify an item. In DirectPlay’s
case, GUIDs are used to identify DirectPlay applications, service providers, and sessions,
among other things. One thing that your application must have is a GUID identifying it
uniquely from other DirectPlay applications. You can obtain this GUID programmatically
with a call to CoCreateGuid(), which has the following prototype:

HRESULT CoCreateGuid(
GUID *pguid //Pointer to the GUID on return

);

This call will return a pointer to a GUID structure, which you should store in your appli-
cation somewhere, perhaps as a const static variable. This GUID should only be gen-
erated once, so if you don’t mind cutting and pasting, you can also use the command line
utility uuidgen.exe, which will also generate a GUID. Either way, after you have
obtained the GUID that will represent your specific DirectPlay application, you can store
it using the DEFINE_GUID macro, defined in afxdisp.h, like so:

// {CA761230-ED42-11CE-BACD-00AA0057B223}
DEFINE_GUID(MY_APPLICATION_GUID,
0xca761230, 0xed42, 0x11ce, 0xba, 0xcd, 0x0, 0xaa, 0x0, 0x57, 0xb2,
0x23);

To obtain an instance of an IDirectPlay4 interface, we use the now familiar
CoCreateInstance() function:

LPDIRECTPLAY4 pDP = NULL;
HRESULT hr;
hr = CoCreateInstance(CLSID_DirectPlay, NULL, CLSCTX_INPROC_SERVER,
➥ IID_IDirectPlay4, (VOID**)&pDP);
if(FAILED(hr))

return hr;

Choosing a Network Connection
In previous hours, you learned the concept of a HAL—an abstraction of the DirectX API
from the underlying hardware. DirectPlay does not support a HAL, per se, but does sup-
port something very similar to it: Service Providers. A service provider is a library that

408 Hour 20

NEW TERM

28 1634xCH20 11/13/99 11:12 AM Page 408

interfaces DirectPlay to a specific type of communications medium. All service providers
provide a consistent interface to DirectPlay, despite the underlying hardware. You will
never have to interface to a Service Provider yourself—DirectPlay takes care of it for
you. As seen in Figure 20.3, the specifics of the service provider are mostly hidden from
the DirectPlay application.

Putting Your Game on the Net—Writing Multiplayer Titles 409

20

FIGURE 20.3
DirectPlay hides ser-
vice provider specifics.

DirectPlay Application

DirectPlay

Network Communications
Devices

Network-Specific
Service Provider

Service providers furnish network-specific communications services for
DirectPlay. They abstract the details of the network transport from game

communications.

Four providers are installed by default with DirectPlay:

• TCP/IP

• IPX

• Modem-to-modem

• Serial link

The first two providers: TCP/IP and IPX, allow DirectPlay to communicate over a net-
work connection, meaning two or more computers can communicate with each other.
The last two: modem-to-modem and serial link, typically support only two players. It
would be possible, however, to host a multiplayer game with these last two providers if
one of the computers was a server with multiple communications devices (although this
would involve using the client/server model) .

As I said earlier, you do not need to concern yourself with what type of service provider
a user will choose when your game runs; or, more specifically, what type of communica-
tions hardware a user might have. DirectPlay will allow the user to pick the connection
type when he runs your game, initially.

The IDirectPlay4::EnumConnections() is used to obtain a list of all the registered ser-
vice providers available for DirectPlay to use. Again, this list will probably include the
standard four mentioned previously. The prototype for this function looks like this:

NEW TERM

28 1634xCH20 11/13/99 11:12 AM Page 409

HRESULT EnumConnections(
LPCGUID lpguidApplication,
LPDPENUMCONNECTIONSCALLBACK lpEnumCallback,
LPVOID lpContext,
DWORD dwFlags

);

lpguidApplication should be set to NULL, to indicate that we are looking for all possible
communication providers accessible on this computer. If we had associated a GUID for
our application with a specific set of providers, only that limited set will be returned. The
lpEnumCallback is a pointer to our DPENUMCONNECTIONSCALLBACK function. This is a call-
back function, which I will talk about shortly. lpContext is a pointer to a user-defined
value, which will be passed as a parameter to our callback function. The last parameter,
dwFlags, should be set to DPCONNECTION_DIRECTPLAY, which indicates that we are inter-
ested in only DirectPlay service providers. If we were interested in locating lobby service
providers, we would instead set dwFlags to DPCONNECTION_DIRECTPLAYLOBBY. DirectPlay
lobbies are covered in the next hour.

A callback function is a function that will be called by DirectPlay on your behalf, once
for each item in a list. This concept is used by DirectPlay in several places, including
enumerating sessions, players, groups, and service providers. You can spot those func-
tions that will use a callback by the leading Enum in the function name.

What happens when you call one of these Enum functions is DirectPlay will, internally,
loop through a list, calling your callback function once for each item in the list. Each of
the Enum functions allows you to pass a user-defined value, which will, in turn, be
passed on every call to your callback function. For example, this value might represent a
window handle, and your callback function could use this handle and the rest of the data
provided by DirectPlay’s call to it to populate a window control. An example of a
DPENUMCONNECTIONSCALLBACK function is in Listing 20.1.

LISTING 20.1 A Connection Callback Function

1: BOOL FAR PASCAL EnumConnectionsCallback(const GUID* pSPGUID,
➥ VOID* lpConnection,

2: DWORD dwConnectionSize, const DPNAME* lpName,
3: DWORD dwFlags, VOID* lpContext)
4: {
5: HWND hWnd = (HWND)lpContext;

➥ // This was passed as the lpContext variable
6: LRESULT lIndex;
7: GUID* lpGuid;
8: // Store service provider name in a combo box
9: lIndex = SendDlgItemMessage(hWnd, IDC_SPCOMBO, CB_ADDSTRING, 0,
10: (LPARAM)pName->lpszShortNameA);

410 Hour 20

28 1634xCH20 11/13/99 11:12 AM Page 410

11: if(lIndex == LB_ERR)
12: return TRUE;
13: // Make space for service provider GUID
14: lpGuid = (GUID*)GlobalAllocPtr(GHND, sizeof(GUID));
15: if(lpGuid == NULL)
16: return TRUE;
17: // Store pointer to GUID in combo box
18: *lpGuid = *lpSPGUID;
19: SendDlgItemMessage(hWnd, IDC_SPCOMBO, CB_SETITEMDATA, (WPARAM)lIndex,
20: (LPARAM)lpGuid);
21: return TRUE;
22: }

It is important to note that this function returns a value of true, as do the rest of the
DirectPlay callback functions you will provide. Returning a value of false will cause
DirectPlay to stop calling your function, and you will not receive the rest of whatever list
you are trying to receive. The preceding function assumes that even despite an error from
the Win32 function calls, DirectPlay can still continue to call this function for other
instances of service providers.

It is important to know that the first two parameters passed to our callback function are a
GUID representing the service provider and a pointer to a DirectPlay Address buffer.
This buffer contains information specific to each service provider to complete the con-
nection. For the modem-to-modem provider, this address will signify a telephone number
to dial. For the TCP/IP provider, it will contain the Internet address to connect to. These
addresses are usually entered by the user, but might also come from a DirectPlay lobby,
as you will learn next hour.

DirectPlay addresses are compound structures composed of GUIDs representing
service providers and address types. They also contain data specific to a service

provider that indicates an address or network location to establish a connection to.

For now, you can simply store this extra buffer data and use it in a call to
InitializeConnection(), which connects the computer to other computers using
DirectPlay. The InitializeConnection() function has the following prototype:

HRESULT InitializeConnection(
LPVOID lpConnection,
DWORD dwFlags

);

The first parameter is a pointer to the DirectPlay address, indicating where the computer
should connect. Again, this data will come from either a call to EnumConnections() or
from a lobby. A DirectPlay address consists of several smaller structures of data, begin-
ning with the GUID of the service provider that DirectPlay uses to connect with. The
dwFlags is currently unused, and should be set to 0.

Putting Your Game on the Net—Writing Multiplayer Titles 411

20

NEW TERM

28 1634xCH20 11/13/99 11:12 AM Page 411

Joining a Session
When it comes time to join a session, a simple call to IDirectPlay4::Open() will do the
trick. The prototype for this function looks like the following:

HRESULT Open(
LPDPSESSIONDESC2 lpsd,
DWORD dwFlags

);

lpsd is a pointer to a DPSESSIONDESC2 structure, which I will get to in a second. dwFlags
can be set to either DPOPEN_CREATE or DPOPEN_JOIN, depending on whether you want to
create a session from scratch or to join an existing session, respectively. If you are inter-
ested in dispensing with any connection boxes that DirectPlay might display while the
connection is progressing, you can also OR the value DPOPEN_RETURNSTATUS with
dwFlags, and DirectPlay will return control back to you immediately, with a value of
DPERR_CONNECTING as the result. You can then continue to call the Open() function until
you receive a value of DP_OK, or any other value, indicating success or failure, respec-
tively.

The DPSESSIONDESC2 structure looks like this:

typedef struct {
DWORD dwSize;
DWORD dwFlags;
GUID guidInstance;
GUID guidApplication;
DWORD dwMaxPlayers;
DWORD dwCurrentPlayers;
union {

LPWSTR lpszSessionName;
LPSTR lpszSessionNameA;

};
union {

LPWSTR lpszPassword;
LPSTR lpszPasswordA;

};
DWORD dwReserved1;
DWORD dwReserved2;
DWORD dwUser1;
DWORD dwUser2;
DWORD dwUser3;
DWORD dwUser4;

} DPSESSIONDESC2, FAR *LPDPSESSIONDESC2;

The guidApplication value should be set to the GUID that you created for your game.
This signifies to DirectPlay which type of game client can join or create this game. The
dwMaxPlayers indicates the maximum number of players who can join this session, and

412 Hour 20

28 1634xCH20 11/13/99 11:12 AM Page 412

dwCurrentPlayers indicates the current number of participating players. As with most of
the structures used as parameters to IDirectPlay4 functions, the dwSize value should be
set to the size of the structure, like so:

DPSESSIONDESC2 dpSession;
DpSession.dwSize = sizeof(dpSession);

For the dwFlags parameter, many flags are possible. These vary how the session is
treated or constructed. Keep in mind that to use more than one flag at a time, you simply
bitwise OR them (using the c-style || operator). Let’s look at some of the possible values
for this parameter:

• DPSESSION_CLIENTSERVER: If this is set, the session will use the client/server archi-
tecture. If not, this will be a peer-to-peer session.

• DPSESSION_JOINDISABLED: This prevents any other players from using Open() (or
SecureOpen()) to join this session.

• DPSESSION_MIGRATEHOST: With this flag set, the session host duties might be taken
over by another computer in the session if the session host exits. This is a way to
ensure that the game session will continue, even if the first hosting computer leaves
for any reason. This flag cannot be used in combination with
DPSESSION_CLIENTSERVER.

• DPSESSION_NEWPLAYERSDISABLED: This is similar to DPSESSION_JOINDISABLED, but
also prevents clients from creating new player objects via CreatePlayer().

• DPSESSION_PASSWORDREQUIRED: This flag specifies that the session is password
protected, and any clients wanting to join must supply the password when calling
Open().

• DPSESSION_PRIVATE: This indicates that this session is normally hidden and won’t
show up in calls to EnumSessions(), unless a password is supplied to that function.

• DPSESSION_SECURESERVER: This indicates that the session is being hosted by a
secure server and any clients must use SecureOpen() to join this session. They
must also fill out the DPCREDENTIALS structure with a valid username, password,
and domain.

To create or join a secure session, we use the SecureOpen() function, which is similar to
Open(). The SecureOpen() function requires two additional parameters as you can see
here:

HRESULT SecureOpen(
LPCDPSESSIONDESC2 lpsd,
DWORD dwFlags,
LPCDPSECURITYDESC lpSecurity,
LPCDPCREDENTIALS lpCredentials

);

Putting Your Game on the Net—Writing Multiplayer Titles 413

20

28 1634xCH20 11/13/99 11:12 AM Page 413

The first two parameters are used exactly as in Open(). The last two are filled out with
additional security information. The lpSecurity parameter is a pointer to a DPSECURITY
structure, and the lpCredentials parameter is a pointer to a DPCREDENTIALS structure.
The prototypes for these two structures look like this:

typedef struct {
DWORD dwSize;
DWORD dwFlags;
union {

LPWSTR lpszSSPIProvider;
LPSTR lpszSSPIProviderA;

};
union {

LPWSTR lpszCAPIProvider;
LPSTR lpszCAPIProviderA;

};
DWORD dwCAPIProviderType;
DWORD dwEncryptionAlgorithm;

} DPSECURITYDESC, FAR *LPDPSECURITYDESC;

typedef struct {
DWORD dwSize;
DWORD dwFlags;
union {

LPWSTR lpszUsername;
LPSTR lpszUsernameA;
};

union {
LPWSTR lpszPassword;
LPSTR lpszPasswordA;
};

union {
LPWSTR lpszDomain;
LPSTR lpszDomainA;
};

} DPCREDENTIALS, FAR *LPDPCREDENTIALS;

The dwSize member of each structureshould be set to the size of the respective structure.
The dwFlags of both structures should be set to 0 because they are currently not used.
For most purposes, you can set the lpszSSPIProvider and lpszCAPIProvider members
of the DPCREDENTIALS structure to NULL and the dwCAPIProviderType and
dwEncryptionAlgorithm values to 0. For the DPCREDENTIALS structure, set the
lpszUserName, lpszPassword, and lpszDomain values to the appropriate username, pass-
word, and NT domain name in which the user has an account.

A secure session is a session hosted by a computer that can provide user authen-
tication and data encryption. Currently, this is only supported by a Windows NT

computer.

414 Hour 20

NEW TERM

28 1634xCH20 11/13/99 11:12 AM Page 414

Of course, if we aren’t going to create our own session, but want to find out what ses-
sions are currently in progress, we can use the EnumSessions() function, providing it
with a pointer to a callback function. The prototype for EnumSessions() is as follows:

HRESULT EnumSessions(
LPDPSESSIONDESC2 lpsd,
DWORD dwTimeout,
LPDPENUMSESSIONSCALLBACK2 lpEnumSessionsCallback2,
LPVOID lpContext,
DWORD dwFlags

);

The lpEnumSessionsCallback2 parameter is a pointer to our DPENUMSESSIONSCALLBACK2
type function. If we are looking for specific types of sessions, we can create a DPSES-
SIONDESC2 structure, fill out a few elements in that structure, and pass a pointer to that as
lpsd. Only sessions matching the values in our lpsd structure will be enumerated. We
can, of course, pass anything we want to lpContext because that will be passed to our
callback function each time.

Communicating with Players
The purpose of establishing the network session is so the application can access node-to-
node communications. DirectPlay facilitates this application-level messaging and mes-
sage routing through abstractions for players and groups. These objects have identity, and
you can establish relationships among them to control the flow of message traffic.

Players and Groups
Now that we’ve picked our service provider and listed all the possible game sessions for
our user to choose a specific one, it’s time to let our player enter the game. After the
game calls Open() or SecureOpen() to join a game (or create one), the player must then
create a DirectPlay player object to represent that user in the game. You can do this with
a call to CreatePlayer(). Every user will need at least one player to represent him in a
game session. This player object is used by DirectPlay to direct its communication. Each
player is represented by a DPID, and this ID value is used to signify a DirectPlay mes-
sage’s destination. CreatePlayer() has the following prototype:

HRESULT CreatePlayer(
LPDPID lpidPlayer,
LPDPNAME lpPlayerName,
HANDLE hEvent,
LPVOID lpData,
DWORD dwDataSize,
DWORD dwFlags

);

Putting Your Game on the Net—Writing Multiplayer Titles 415

20

28 1634xCH20 11/13/99 11:12 AM Page 415

The lpidPlayer value is filled in by DirectPlay after our player is created. You should
fill in a DPNAME structure, passing it as a parameter to lpPlayerName. The hEvent
parameter specifies a HANDLE to a Win32 Event structure, which can be created by a call
to the Win32 function CreateEvent(). If you want to associate any game specific data
with this player, you can pass a pointer to it via lpData and set the dwDataSize to the
size of that data. This custom data can represent any player specific data you want, above
and beyond any information DirectPlay natively maintains about your player. Finally, the
dwFlags parameter can be set to either 0 or

• DPLAYER_SERVERPLAYER—Indicates that the player is the server player for a
client/server type of game.

• DPLAYER_SPECATOR—Indicates that this player won’t be involved in any actual
game play, but will, instead, participate in the game session as a spectator.

The hEvent structure is important because it can be used as a signal to your program that
a DirectPlay message has arrived at the player’s computer. You can use the Win32 func-
tions WaitForSingleObject() or WaitForMultipleObjects() to wait for the event han-
dle hEvent to be set to a signaled state by DirectPlay. When DirectPlay signals that event
handle, you can be assured that a call to the message Receive() function will return with
a message. Normally, you would want to create a separate thread in your application that
will wait on this event handle to be signaled and will process messages after a call to
Receive().

416 Hour 20

In a client/server type of DirectPlay session, the server must create a player
representing the server. It will have the ID of DPID_SERVERPLAYER. Of course,
there can only be one player in a session with this ID. The server creates this
player by specifying the flag DPPLAYER_SERVERPLAYER in the dwFlags parame-
ter passed to CreatePlayer().

Players can become part of groups, and groups can even become members of other
groups. You can use this notion to target groups of players for a specific reason and allow
DirectPlay to only send messages based on a player’s group membership. You can use
the CreateGroup() and CreateGroupInGroup() functions to create new groups, and
AddPlayerToGroup() and AddGroupToGroup() functions to add existing players and
groups to groups, respectively.

Using the DirectPlay Send() function, which allows us to send DirectPlay messages, it
would be possible for us to send any type of message to players A and B, as seen in
Figure 20.4. To do this, we would actually send the message to Group A—DirectPlay

28 1634xCH20 11/13/99 11:12 AM Page 416

will automatically see to it that our message is sent to both players. Similarly, sending a
message to group B will result in both players C and D receiving that message.

Putting Your Game on the Net—Writing Multiplayer Titles 417

20

FIGURE 20.4
A DirectPlay grouping
example.

Group A

Player A

Player B

Group C

Group B

Player C

Player D

There can be many reasons to use this notion of grouping, but the most obvious might be
to direct your messages based on game geography. You can group players together based
on either their physical location (same room, same state, and so on), or their virtual game
geography. Of course, players who want to band together to form “sides” in a game can
also be grouped together using DirectPlay groups.

The CreateGroup() function is similar to CreatePlayer(), in that it takes a parameter to
a DPNAME structure, which provides, among other things, the group’s name. The
CreateGroup() can also assign an arbitrary data value to a group, which can be seen on
any computer joined to the session the group is in. Of course, as with CreatePlayer(), a
DPID value is returned indicating the ID representing this group. The CreateGroup() has
the following prototype:

HRESULT CreateGroup(
LPDPID lpidGroup,
LPDPNAME lpGroupName,
LPVOID lpData,
DWORD dwDataSize,
DWORD dwFlags

);

The CreateGroupInGroup() function takes one extra parameter: the ID of the group that
will contain the new group to be created.

The AddPlayerToGroup() and AddGroupToGroup() are very similar. Both take a first
parameter, of type DPID, which indicates to which parent group a player or group is to be
added. For the second parameter, the first function takes a DPID representing the player to
add, and the second function, AddGroupToGroup(), takes a DPID representing the group
to add. Those two functions look like this:

HRESULT AddPlayerToGroup(
DPID idGroup,

28 1634xCH20 11/13/99 11:12 AM Page 417

DPID idPlayer
);
HRESULT AddGroupToGroup(
DPID idParentGroup,
DPID idGroup

);

It is possible, when creating groups, to create a staging group. A staging group is a
DirectPlay group, created with the DPGROUP_STAGINGAREA flag set, that allows you to
gather players together before actually starting game play. If your game needs to gather
players in this manner, you can wait to actually start the game until StartSession() is
called. Calling this function will cause all game clients to receive a DPMSG_STARTSESSION
message. The prototype for this function is as follows:

HRESULT StartSession(
DWORD dwFlags,
DPID idGroup

);

The parameter dwFlags is currently unused, and should be set to 0. The idGroup parame-
ter will be set to the group used to stage players before the game starts.

A staging group is a DirectPlay group used to gather players before a session
starts. Use in conjunction with StartSession() to wait for enough players to

join a session before it begins.

DirectPlay Messages
Two types of messages are sent by DirectPlay applications during a session: system mes-
sages and user messages. System messages are used by DirectPlay to indicate changes in
the session (including session creation itself), and are usually processed internally by
DirectPlay. User messages are messages that the DirectPlay application uses for its own
data, and can be any user-defined type. You can send your own user messages using the
Send() function, which we have already mentioned. The Send() function looks like the
following:

HRESULT Send(
DPID idFrom,
DPID idTo,
DWORD dwFlags,
LPVOID lpData,
DWORD dwDataSize

);

The idFrom parameter indicates the sending player, whereas the idTo parameter indicates
the destination of the message. To send the message to all players in a session, regardless
of group, use the value DPID_ALLPLAYERS. If the message is a system message, the

418 Hour 20

NEW TERM

28 1634xCH20 11/13/99 11:12 AM Page 418

idFrom value will be set to DPID_SYSMSG. The dwFlags value indicates how the message
should be sent, and it can be set to one or more of the following:

• DPSEND_ENCRYPTED—Indicates that the message should be encrypted and only be
set if the DPSEND_GUARANTEED flag is also set. To use encryption, the session must
also be secure, which means that it must have been created by a call to
SecureOpen().

• DPSEND_GUARANTEED—Indicates that a message is guaranteed to be delivered to its
target. By default, a message is sent with no guarantee of delivery. I will talk about
guaranteed messaging in the next section.

• DPSEND_SIGNED—This flag signs the message with a digital signature. Like encryp-
tion, this type of message can be used only in a secure session.

Dealing with Network Latency
A large part of a game’s playability is related to its “responsiveness.” Responsiveness is a
measure of how long it takes the game to display a response to a user’s input. An exam-
ple of poor responsiveness in multiplayer games would be when the user presses the Fire
button on a joystick, and he doesn’t see the missile launch for many seconds later.
Obviously, the quicker the apparent reaction time to a user’s input event, the more
responsive the game feels. The largest factor affecting a game’s responsiveness is latency,
a term you learned about in Hour 6, “DirectSound—Adding Ambience and Sound
Effects to Your Game.” Although in that hour the term was used to describe the amount
of time between when a sound is applied programmatically, and when the user actually
hears the sound. In network terms, latency is used to describe the amount of time that it
takes data to travel across a network or communications link.

Network latency might be influenced by the amount of data currently on the user’s net-
work, or by any path that data might take traveling between two computers. Obviously,
physical factors can influence latency: because data is ultimately transmitted as elec-
tronic signals over some sort of wire, those signals are limited by the speed of light. If an
Internet-based connection were established between two computers located on opposite
sides of the earth, any network traffic must pass thousands of miles, perhaps bouncing
off of satellites and through radio waves, as well as over land-based wire. All that traffic
will be limited by the speed of light, no matter what other factors are involved; and there
are many.

The networks that make up the Internet (and indeed, even some local networks) consist
of many routing devices. Each time a network packet must pass through a routing device,
a small delay is introduced into the overall time taken to deliver that packet. In the

Putting Your Game on the Net—Writing Multiplayer Titles 419

20

28 1634xCH20 11/13/99 11:12 AM Page 419

simplest sense, the fewer routers, or “hops,” in routing terms, that a network packet of
data must pass through the lower the latency. Not only will a router slow a packet down
simply by routing it, but also it might have to split a packet up into smaller packets for
delivery. The time needed to re-assemble all these smaller packets into the original,
larger packet that was sent by the originating computer also introduces delays.

Another large factor in network latency is dropped or mangled packets. At the lowest
level, the network or communication device is responsible for making sure that a
received packet is whole and error-free. If the network for some reason drops a packet, or
a packet is received with errors, a re-transmittal of the original packet might be required.
Whether this occurs automatically for you (that is, transparently by DirectPlay) will
depend on whether you are using DirectPlay’s guaranteed messaging features. If you are
using that feature, every time DirectPlay has to retransmit a message (resulting in
retransmittal of the network packets), a longer delay will be introduced. If you do not
take advantage of DirectPlay’s guaranteed deliver feature, you will have to deal with
dropped or bad messages yourself. Of course, without guaranteed deliver, you will never
know that a message never reached its destination, or was otherwise corrupted, so you
will have to deal with this in some fashion or other.

The last biggest factor affecting network latency is the bandwidth of a communications
device, and the buffers used by the operating system for that communications device. As
you transmit more and more data for your game, you increase your chances for over-
whelming another computer’s capability to receive your data. Low bandwidth communi-
cations, like a modem-to-modem connection, have a relatively small amount of capability
for transmitting data. This means that if you are trying to send too much data at once,
you will have to wait until the modem has finished signaling your data and sending it
across the wire before you can send more.

And even if you have a very fast local network, a slow computer might have trouble
dealing with all the game data that it is receiving, and might fall behind in trying to deal
with it all. Most low-level communications drivers use buffers to store data coming in
from a communications device, and unless the CPU retrieves that data from them and
frees the buffer for further storage, that device will become essentially useless and either
start dropping network packets or telling other computers to stop sending packets. This
situation will correct itself as the CPU catches up, and empties the buffers; but, in the
meantime, data is lying around in buffers getting old.

DirectPlay offers many features and capabilities to help you deal with network latency.
Decreasing network latency will help improve responsiveness, and improving responsive-
ness will make your game more playable.

420 Hour 20

28 1634xCH20 11/13/99 11:12 AM Page 420

Deterministic/Non-Deterministic Data
One way to deal with network latency is to remove the need to worry about dropped
packets or at least for having to transmit more data than is needed. The less data you
have to transmit, the more likely it is to be delivered, and delivered on time. One way of
reducing the amount of data you will transmit over the wire is by deciding whether data
is deterministic.

Deterministic data simply means data that can be computed or guessed from pre-
vious data (also called “dead reckoning”). An example of deterministic data

would be calculating a competitor’s ship’s current screen position from its previous posi-
tion, heading, and velocity. It might be wise, using this formula, for you to only transmit
some sort of data through DirectPlay only when a ship’s heading or velocity changes. At
any point in time, unless those two factors change, you can safely guess where a compet-
ing ship might be. Of course, this is only an estimate you are making, so you might want
to occasionally have each player’s game client transmit her current position, so you can
make sure that your guesses are accurate or make corrections.

Non-deterministic data, of course, is the opposite of deterministic data—it can-
not be calculated with specific information being transmitted between computers.

If, in a role playing type of game, a player’s character were to “give” an item to another
player’s character, the specific item to be given must be transmitted as data. The receiv-
ing player cannot guess which item is to be received.

Of course, the balance between deciding which data is deterministic versus non-deter-
ministic might require some thought. By categorizing all the possible types of informa-
tion that must be exchanged between computers into either one of these categories, you
will be able to narrow down the information into that which must be transmitted more
frequently than the other. Again, even with deterministic data, you will probably have to
transmit some game state information occasionally, just so competitor’s game clients
won’t get too out of synch.

Deterministic data refers to a future result, which can be calculated (sometimes roughly)
without requiring specific data on hand. This type of result (or value) can be determined
by any game program or server without any data being transmitted over the network or
exchanged. Non-Deterministic Data, however, cannot be calculated or determined with-
out specific data being transmitted over the network.

Guaranteed Messaging
Along with deciding how much data should be sent and how often, you can also make
some decisions on whether data should be sent as “guaranteed” by DirectPlay.

Putting Your Game on the Net—Writing Multiplayer Titles 421

20

NEW TERM

NEW TERM

28 1634xCH20 11/13/99 11:12 AM Page 421

Guaranteed messaging implies that every message you send is received by its destination.
Of course, as you might suspect, this incurs a penalty in the latency department. If you
send every possible DirectPlay message as guaranteed, you could possibly double or
even triple your latency. DirectPlay has to wait for the receiving end of a message to
transmit back to it that the receiving end has received your message with no errors or no
loss of data. If some data is lost or garbled, DirectPlay must re-transmit your message.
This is, of course, handled transparently to you, but consider that DirectPlay will try very
hard to make sure that what you send is what the receiving end gets.

You do get the choice to decide whether to use guaranteed messaging on a message-by-
message basis, so you can reserve this feature for those types of messages that must get
through, no matter what. A good example of this would be when a player’s ship
explodes. It might be very important to the rest of the players in a game to know this fact
and to deal with it accordingly.

To use guaranteed messaging, you can simply set the DPSEND_GUARANTEED flag in the
dwFlags parameter passed to IDirectPlay4::Send() or IDirectPlay4::SendEx(). By
setting this flag, you are signifying that for this message, at least, DirectPlay should
guarantee that your message is received by its destinations.

Message Management
One last way to control network latency is by using DirectPlay’s message management
functions: GetMessageQueue(), GetMessageCount(), CancelMessage(),
CancelPriority(), and SendEx(). These functions allow you to control and monitor
DirectPlay’s send and receive queues. As you send DirectPlay messages (using Send() or
SendEx()), your data is temporarily stored in a message queue. These messages are
stored in the destination’s receive message queue until they are retrieved by a DirectPlay
application.

The CancelMessage() function allows you to delete a specific message by ID. To obtain
this ID, you must send your message using SendEx(), instead of Send(). Using
SendEx(), you can obtain the ID of a specific message, which you can later use to cancel
that message if it hasn’t already been sent. This might come in handy if a player makes a
move which might cancel out a previous move, meaning that you can simply cancel the
message indicating the first move and ignore sending the second. You could also even
take this management a little further (especially, perhaps on slow links like modem-to-
modem) and cancel a message indicating a player’s state if it hasn’t been sent within a
certain time and new state data should be transmitted anyway.

422 Hour 20

28 1634xCH20 11/13/99 11:12 AM Page 422

CancelPriority() cancels all messages currently pending transmittal by DirectPlay that
are within a certain priority range. This introduces the idea that DirectPlay can also pri-
oritize messages by indicating a message’s priority in the call to SendEx(). By setting the
dwPriority value to an appropriate DWORD value on a call to SendEx(), you can ensure
that DirectPlay will try to send messages in order of priority. A value of 0 is the lowest
priority, while 65535 is the highest.

The function GetMessageQueue() is used to determine how many messages are in a par-
ticular player’s send or receive queue. By setting the idFrom and idTo parameters, you
can determine how many messages are waiting to be sent to or received from a specific
player. By setting dwFlags to either DPMESSAGEQUEUE_SEND or DPMESSAGEQUEUE_RECEIVE,
you can specify which queue to look at. GetMessageCount() simply returns the number
of messages waiting to be processed in a specific player’s receive message queue.

You can use these last two functions to gauge just how well a receiving computer is han-
dling messages. If, for example, the receiving computer were much slower than the send-
ing one, it would be possible for the faster computer to overwhelm the slow computer by
sending too much data too fast. You can implement “throttling,” which means that you
start to delay sending messages, or, maybe even more likely, start discarding low priority
messages. This would be easy to do with a single call to CancelPriority(), where you
can stop DirectPlay from sending a lot of messages with a given priority (or lower).

Summary
This hour covered a lot of information. You learned how to devise a strategy for dealing
with deterministic and non-deterministic data, as well as how to maintain game state
information between game clients. You learned about players, sessions, and groups, as
well as the management of those objects.

You learned about how to develop strategies for writing games that have high responsive-
ness over a network, as well as how to handle situations that might arise if your game is
played over a slow network.

You also learned about DirectPlay’s notion of Service Providers, and how to pick a spe-
cific service provider, or let the user choose which one to use. You also learned how to
use DirectPlay’s callback functions to enumerate game sessions, groups, and players on a
network.

We’ll continue on with this notion of adding multiplayer capabilities in the next hour,
when we discuss DirectPlay lobbies. You’ll continue to add functionality to your game to
add an additional, “social” experience to your game.

Putting Your Game on the Net—Writing Multiplayer Titles 423

20

28 1634xCH20 11/13/99 11:12 AM Page 423

Q&A
Q When setting up a network session, the user must make decisions, such as

which service provider to use and perhaps some device-specific parameters
like a phone number for a modem or a baud rate on a serial port. How is that
interface implemented?

A You can use the Windows dialog boxes that come with the service providers to do
most these things, but that is often ugly, undesirable, and disruptive to a full-screen
(immersive) application. Yuck, all of a sudden I’m back in Windows looking at a
dialog box! These dialog boxes can be silenced and replaced by your application’s
user interface, but now your application must assemble the DirectPlay address to
create the connection. You should either plan to allow dialog boxes to intrude or
implement some of your own user interface to replace them.

Q You said that, in a client/server configuration, most of the data traffic flows
client to server. Because the host has most the data, wouldn’t most of the flow
be from server to client?

A It really depends on application, architecture, and the engineering philosophies
behind what messages you use to get the job done. If there are many players in dis-
tinct areas of a vast virtual world, the server gets incoming data from all the play-
ers and must send updates of one to another only when they draw near each other.
Hence, over time, the main data flow is client to server. However, if we fill that
world with AI agents, the client must display their images using server-sent mes-
sages, and the main data flow will be server to client.

Q Do you have to use event handles to receive player messages?

A This opens up a very old argument between deterministic and asynchronous solu-
tions to real-time problems. A deterministic application is, in essence, a cyclic
activity that manages its own time slicing. That typically means it polls the mes-
sage queue rather than waits for an event signal. One could argue that polling is
inefficient, but another could point out the problem is network latency, not the time
it takes to see if any messages are waiting. To answer the question: No, you do not
have to use event handles unless your application uses asynchronous threads.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

424 Hour 20

28 1634xCH20 11/13/99 11:12 AM Page 424

Quiz
1. What is a DirectPlay Service Provider? What is an example of one?

2. What two main models of communication are used by DirectPlay?

3. What is a callback function and how is it used?

4. What is meant by deterministic data?

5. How do you create a secure session?

6. How are DirectPlay players and groups identified?

7. What is meant by guaranteed messaging? How do you use it?

8. What is the DPSESSION_MIGRATEHOST flag used for in the DPSESSIONDESC2 struc-
ture?

9. How might you send a message to all players in a session?

10. Can an IDirectPlay4 object be used for more than one session?

Exercises
1. Be sure to check out the Duel sample in the DirectX SDK. It is a good example of

how to tie different components of DirectX together, as well as how to manage
game state information.

2. For a real challenge, experiment with the Duel sample to see if you can make it
more responsive to player input without impacting network consistency.

Putting Your Game on the Net—Writing Multiplayer Titles 425

20

28 1634xCH20 11/13/99 11:12 AM Page 425

28 1634xCH20 11/13/99 11:12 AM Page 426

HOUR 21
Game Central—Creating
Lobbies

In the previous hour, you learned how to add multi-player capabilities to
your game with DirectPlay. In this hour, you will learn how to expand upon
your knowledge of DirectPlay, and will learn about DirectPlay lobbies.
Besides making it easy for players to find other players for a game, adding
support for DirectPlay lobbies in your game will also give players a chance
to chat or exchange game strategy before or during games. DirectPlay lobby
support adds virtual meeting capabilities to your game.

DirectPlay lobbies are really meant to supplement a DirectPlay enabled
game. It isn’t necessary that your game support DirectPlay lobbies to be
multiplayer capable, but you will find that by adding very little code to your
game, you will be able to add support for a DirectPlay lobby, thereby
enhancing the gamer’s experience. Now, not only will players be able to
play interactively with each other, but also they will have a forum to gather
together before, during, and after gaming sessions.

29 1634xCH21 11/13/99 11:17 AM Page 427

This lesson introduces you to the IDirectPlayLobby3 interface, and how to use methods
from this interface and the IDirectPlay4 to provide functionality for interaction between
players in a multiplayer game. You will build upon the knowledge you gained from the
previous hour to add lobby functionality to your game.

In this hour, you will learn

• The concepts of a DirectPlay lobby

• About the IDirectPlayLobby3 interface

• Adding users, groups, and sessions

• To send and receive chat messages from the lobby and game client

• How to use a lobby to automatically launch a DirectPlay application

Introduction to DirectPlay Lobbies
Usually four components exist in a DirectPlay lobby: the lobby server, the game server,
the lobby client, and the game client. Sometimes, especially in peer-to-peer games, the
game server might not be the same as the lobby server, and it might even be another
player’s computer. The lobby server is responsible for tracking game data and player
account information. The game server, of course, deals with actual game play, and is
either a dedicated server, or another player’s game client acting as host for a session. The
lobby client provides most of the functionality associated with dealing with a lobby,
whereas the game client handles all of the actual game play. As you can see in Figure
21.1, all four parts work together to form a lobby.

428 Hour 21

DirectPlay
Lobby Server

DirectPlay
Game Server

DirectPlay
Lobby Client

DirectPlay
Game

Application

FIGURE 21.1
DirectPlay lobby block
diagram.

Most of the duties associated with communicating with a lobby server and letting the
player interact with the lobby as a whole are handled by the lobby client. The game
client, which you are already familiar with from last hour, is not usually running until the
game itself begins. The game client is usually launched by the lobby client, although it
need not be. You might ask yourself why the game client doesn’t run until the game is

29 1634xCH21 11/13/99 11:17 AM Page 428

started, and the answer is very simple: until the game commences, it is the lobby client’s
job to take care of chatting and player locating responsibilities, as well as to obtain the con-
nection parameters needed for the game. When these are in hand, the lobby client launches
the game client, passing to it all that the game client needs to know to start the game.

A DirectPlay lobby is, in the simplest sense, a meeting place for players. In this sense, a
lobby could represent a large room in which players can gather. There can be many lob-
bies for a particular game, or even many lobbies for many games. You might be familiar
with this by playing on some of the large, commercial gaming sites on the Internet. You
might have noticed, by playing on one of these sites, that for a particular game, lobbies
are generally categorized by type of game play. One lobby might target seasoned game
players, and one might target beginners. It might be wise to offer the gamer some choice
in which type of game to join.

Bringing Players Together Under One Roof
The lobby client would, of course, show these lobbies as choices for a player. When a
player has decided which lobby suits his or her taste, he can then join that lobby. Once in
the lobby, the player can now begin looking for a particular game to join, or he can
simply hang around and chat with others in the same lobby. As you will see in a short
while, it is very easy to add inter-player chat capabilities to your game, and the value it
will add to your game is great. Let’s face it, a lot of the fun in playing games comes from
the before and after game chatter that goes on.

Now that the player is in the lobby, he will begin looking for other players to join in on a
game with, or simply wait for games to start with random players. A lobby client will
show other players in the lobby, as well as all of the games in session or starting. This is
usually done graphically, using icons for other players, and perhaps conveying the idea of
players sitting around a table to represent a game session.

It is at this point that the player can either start a game session, indicate that he wants to join
a game session in progress, or join a session and wait for enough players to join before actu-
ally starting the game. As you will see later, it is possible to join a game session without
actually starting the game. This makes it possible for a player to join a game and wait for
others to join before starting the game, or to even wait for the right amount of people to join
(there might be a minimum amount of players needed for a card game, for example).

When a player has found a group of players and a game session to join (or has started one
of his own), the actual game can commence. It is at this point that the lobby client can
launch the game client. The lobby client continues running, however, right alongside of
the game application and can communicate with it for the duration of the game session.

Game Central—Creating Lobbies 429

21

29 1634xCH21 11/13/99 11:17 AM Page 429

Before the game client is actually launched, the lobby client has obtained all the communi-
cation parameters needed by the game client. Part of what the lobby is responsible for is
keeping track of communication parameters, such as computer addresses and service
provider types, as well as an automatic launch of the game application. What this means is
that it is possible to bypass all the dialogs normally presented to the user asking for connec-
tion information. Those dialogs are not shown because the game client, when it is asking
DirectPlay to connect, already knows everything it needs to know about the connection.

Finally, while a player is playing the game, data from the game can be relayed back to the
lobby session. This data is sent from the game client to the lobby, and it might just be col-
lected and stored for later use. Data from the game could represent such things as a player’s
score or perhaps some sort of move or play that the player performed. This data can be sent
by the lobby client to the lobby server and stored somewhere, perhaps in a database. This
collected data can then be compiled into lists or statistics and perhaps presented on a web
page somewhere. A good way to use this data would be to host tournaments, perhaps
giving prizes to the top 10 scores in each lobby over a certain period of time.

To write code for a game that implements a DirectPlay lobby, you will be using objects
based on both the IDirectPlayLobby3 and IDirectPlay4 interfaces. As you will see
shortly, the two interfaces go hand-in-hand, and you’ll need an instance of both to perform
all of the functions a lobby will need.

Because DirectPlay can be written to use a variety of connection schemes, such as
client/server and peer to peer and because writing a lobby server is very involved, for the
rest of this hour, you will concentrate simply on adding lobby code to a game that already
is DirectPlay-able. Writing a full-fledged lobby and game server is usually a large commer-
cial venture, complete with advertising and Web sites geared towards presenting game play
data and tournaments. Lobby and game servers usually require logging data to a database
over time, which is too large a project to learn in an hour (let alone a day). We will cover
the concepts and goals of a lobby server next, though, so you’ll have an idea of how your
game might work on a larger scale—not just on a modem between you and your buddy.

A full-fledged lobby client will be written using the Lobby Provider SDK from
Microsoft. The presentation of the lobby concept to a user could easily be handled by a
combination of Web browsing and a lobby client (perhaps an ActiveX component), or
just by a sophisticated, standalone lobby client. For more information on how to write
your own sophisticated lobby client or server, you should contact Microsoft for more
information on the lobby provider kit.

A lobby provider is a client component (DLL) supplied by the developer of a
lobby server. It implements communication functions with the lobby server as
requested by DirectPlay.

430 Hour 21

NEW TERM

29 1634xCH21 11/13/99 11:17 AM Page 430

The Game Server
The lobby server will most likely be database driven and should be very scalable because
the idea is to get a large amount of players together—the more the merrier. It will also
most likely be tied to the Web, somehow. As you look at the large commercial ventures,
you will see that they tie a large amount of information together, such as tournament and
game info, and present it on a Web site. They also track your player information and
store that in a database as well.

As mentioned previously, the lobby server might or might not be the same as the game
server, and they might not even be running on the same computer, nor even located close
to each other physically. It is possible for a lobby server to be running on the Internet
somewhere, perhaps in conjunction with a Web site, and for the actual game session to
be hosted via some dialup service. Remember that it is the lobby client’s responsibility to
obtain the game connection information from the server and to send that information to
the game client. The lobby client could connect to the Internet via the DirectPlay TCP/IP
service provider, but the game session could be played over the DirectPlay modem ser-
vice provider. This might be likely if the game play was to take place over a proprietary
low-latency network.

Making a DirectPlay Application Lobbyable
When a user decides to join a session in-progress or start a new game when all players
have joined, the DirectPlay Lobby interface, IDirectPlayLobby3, enables you to launch
the actual game program automatically. The capability for DirectPlay (via the lobby
interface) to launch your application means that your application is lobby-aware.

A lobby-aware application is a DirectPlay application capable of being launched
by a lobby and is capable of obtaining its connection parameters from a DirectPlay
lobby.

Game Central—Creating Lobbies 431

21

Don’t be discouraged by the fact that we won’t be covering how to write a
large-scale lobby server or sophisticated lobby client. The DirectX SDK
includes a test lobby server, which should be more than adequate to test
your game with. If you are successful at writing a game with DirectPlay fea-
tures built-in, you can always consider having the game hosted on a large-
scale game hosting site. One of the benefits of using the DirectPlay
architecture and supporting DirectPlay lobbies is that if you write the API
correctly, your game should be hostable on almost any of the game hosting
sites. I’ll leave that as something for you to look into.

NEW TERM

29 1634xCH21 11/13/99 11:17 AM Page 431

For a DirectPlay game to connect to other clients or servers running on other computers,
it must use a network connection. Without lobby support, this is usually accomplished by
asking the user for connection parameters (for example, an Internet address for a TCP/IP
type of connection). The user fills in a dialog box presented by DirectPlay with the para-
meters needed for DirectPlay to successfully complete the connection.

A DirectPlay game can also get its connection information from a lobby because a lobby
would have specific information on a game session, including connection parameters. To
make a game “lobbyable,” a small amount of code change is needed to an already DirectPlay
enabled game to accommodate this. A DirectPlay enabled game can also include the code
necessary to provide a lobby interface internally, thereby also taking advantage of obtaining
connection parameters from the lobby. Thus, there are three possible ways in which a
DirectPlay game can be written. They are as follows:

• Stand-Alone—This type of client does not know about lobbies, nor how to use them.

• Lobby-Aware—This type of client can be launched by an external lobby and is
aware of how to obtain information about the game session (including connection
settings) from the lobby that launched it.

• Self-Lobbied—This type of game contains code to provide lobby client functions
internally, so it does not require an external client to launch it.

It is the last two types of game that you will now learn how to build. The first type, Stand-
Alone, you already know how to build from the last hour. With very little change to the code
of a Stand-Alone type of game, you will be able to write games that are Lobby-Aware or
Self-Lobbied.

The IDirectPlayLobby Interface
The IDirectPlayLobby3 interface is, like the rest of DirectX, based on COM. It has the
following list of methods:

• Connect()

• ConnectEx()

• CreateAddress()

• CreateCompoundAddress()

• EnumAddress()

• EnumAddressTypes()

• EnumLocalApplications()

• GetConnectionSettings()

432 Hour 21

29 1634xCH21 11/13/99 11:17 AM Page 432

• ReceiveLobbyMessage()

• RegisterApplication()

• RunApplication()

• SendLobbyMessage()

• SetConnectionSettings()

• SetLobbyMessageEvent()

• UnregisterApplication()

• WaitForConnectionSettings()

• AddRef()

• QueryInterface()

• Release()

Like the other DirectX interfaces you have already learned about, the last three functions:
AddRef(), QueryInterface(), and Release() are inherited from the IUnknown interface.

To begin your foray into lobby client building, you must first obtain a pointer to an
IDirectPlayLobby3 interface. You can do this with a call to the COM function
CoCreateInstance. An example of doing this is

HRESULT hr;
LPDIRECTPLAYLOBBY3A lpDirectPlayLobby3A;
hr = CoCreateInstance(CLSID_DirectPlayLobby, NULL,

CLSCTX_INPROC_SERVER,
IID_IDirectPlayLobby3A,
(LPVOID*)&lpDirectPlayLobby3A);

if (FAILED(hr))
goto FAILURE;

You should be familiar with using this function to obtain references to COM objects by now.
Notice that we are obtaining an interface for an IDirectPlayLobby3A COM object. This is
important because we will be using ANSI strings in the structures that we pass to functions
later. If we were going to be passing Unicode strings as members of structures that we will
pass to our lobby object’s functions, we would instead want to get a reference to an
IDirectPlayLobby3 interface. Just like the IDirectPlay4 interface, the IDirectPlayLobby3
interface has both an ANSI and Unicode interface, represented by IDirectPlayLobby3A and
IDirectPlayLobby, respectively. For the remainder of this hour, I will refer to this interface
as simply IDirectPlayLobby3. You must decide whether to use the ANSI or Unicode ver-
sion. One of the benefits of using a Unicode interface and Unicode strings is ease of porting
your game to other languages besides English.

Game Central—Creating Lobbies 433

21

29 1634xCH21 11/13/99 11:17 AM Page 433

DirectX also provides a helper function for creating IDirectPlayLobby3 objects—
DirectPlayLobbyCreate(). The following is the prototype for this function:

HRESULT WINAPI DirectPlayLobbyCreate(LPGUID lpGUIDSP,
LPDIRECTPLAYLOBBY *lplpDPL,
IUnknown *lpUnk,
LPVOID lpData,
DWORD dwDataSize);

As you can see, this function returns a pointer to a DirectPlay Lobby via the LPDIRECT-
PLAYLOBBY type parameter lplpDPL. Like most of the other DirectX interfaces, this func-
tion takes a pointer to an IUnknown interface, which is used for aggregation. Like the
other DirectX interfaces, this feature isn’t currently supported, so you must pass NULL.
The lpData must currently be set to NULL, and the dwDataSize should be 0. The LPGUID
parameter must also be set to NULL.

Lobby Support for the Game Client
Your DirectPlay Lobby can help your game client, when you launch it to start a game, by
setting most of the information needed by the game client via a call to
SetConnectionSettings(). The following is the prototype for this function:

HRESULT SetConnectionSettings(DWORD dwFlags,
DWORD dwAppID,
LPDPLCONNECTION lpConn);

The dwFlags parameter is reserved, and it must be 0. The dwAppID parameter is the GUID
that represents which game client that these connections will be used by. Keep in mind
that it is possible for a lobby client to launch more than one type of game, so this is how it
identifies for which type of game it is setting communication parameters. The lpConn
parameter is a pointer to a DPLCONNECTION structure, which looks like the following:

typedef struct {
DWORD dwSize;
DWORD dwFlags;
LPDPSESSIONDESC2 lpSessionDesc;
LPDPNAME lpPlayerName;
GUID guidSP;
LPVOID lpAddress;
DWORD dwAddressSize;

} DPLCONNECTION, FAR *LPDPLCONNECTION;

434 Hour 21

29 1634xCH21 11/13/99 11:17 AM Page 434

The dwSize parameter should be set to the size of the DPLCONNECTION structure. The
dwFlags represents how to open a session, and it should be either DPLCONNECTION_CREATE-
SESSION, or DPLCONNECTION_JOINSESSION, which tell the game client to create or join an
existing session, respectively. The lpSessionDesc parameter is a pointer to a DPSESSION-
DESC2 structure, which I will cover shortly, in the “Creating a Session” section. For now,
just know that it indicates information about the session. The player name is represented by
the lpPlayerName and is the means by which the lobby client informs the game client on
what name to use for the player. The guidSP represents the type of service provider to use
(you should recall what these are from the previous hour). The lpAddress and
dwAddressSize parameters represent a pointer to the address information and the size of
the address information, respectively. These last two parameters also deal with information
that the service provider needs, and were covered last hour.

After the lobby client sets the communication parameters via the call to
SetConnectionSettings(), the game client, as it first runs, can then call
GetConnectionSettings() to obtain all the information needed to finalize the
connection to the games session host. The parameter for GetConnectionSettings() is

HRESULT GetConnectionSettings(DWORD dwAppID,
LPVOID lpData,
LPDWORD lpdwDataSize);

When called from a lobby client, the dwAppID points to the GUID representing the game
client. When called by your game client, it should be set to 0. The lpData parameter is set
to a buffer to hold the connection settings, and lpDataSize points to a variable indicating
the size of this buffer.

Registering the Game as Lobbyable
DirectPlay must somehow know that your game is lobbyable (so that it might be
launched by any type of lobby client), so at some point during the installation of your
game, you can use the function RegisterApplication(). The prototype for this function
is as follows:

HRESULT RegisterApplication(DWORD dwFlags, LPDPAPPLICATIONDESC lpAppDesc);

Using this function makes changes to the registry and associates a GUID with your
game. This GUID will be used later by the lobby to launch your game at the appropriate
time. The GUID used in the DPAPPLICATIONDESC structure passed to this function is
important because it is used to identify this application within a session.

A DPAPPLICATIONDESC structure specifies such things as the filename and path to the
game client, as well as a name and description. This structure also associates a GUID
with your game client. A prototype of that structure can be seen in Listing 21.1.

Game Central—Creating Lobbies 435

21

29 1634xCH21 11/13/99 11:17 AM Page 435

LISTING 21.1 Registration Information Structure

1: typedef struct {
2: DWORD dwSize;
3: DWORD dwFlags;
4: union {
5: LPSTR lpszApplicationNameA;
6: LPWSTR lpszApplicationName;
7: }
8: GUID guidApplication;
9: union {
10: LPSTR lpszFileNameA;
11: LPWSTR lpszFileName;
12: }
13: union {
14: LPSTR lpszCommandLineA;
15: LPWSTR lpszCommandLine;
16: } union {
17: LPSTR lpszPathA;
18: LPWSTR lpszPath;
19: } union {
20: LPSTR lpszCurrentDirectoryA;
21: LPWSTR lpszCurrentDirectory;
22: }
23: LPSTR lpszDescriptionA;
24: LPWSTR lpszDescriptionW;
25: } DPAPPLICATIONDESC, FAR *LPDPAPPLICATIONDESC;

If you look closely at the preceding use of unions, you might begin to realize how the
IDirectPlayLobby3 interface has a dual nature. Because we are currently dealing with
the ANSI version of the interface, we will be setting the strings that end with the capital
‘A’. Most of these structure members should be self explanatory. It might be wise to note
that, again, we see the GUID of the game client, this time represented by the
guidApplication member. The dwFlags value is currently not used, and must be 0. You
should also set the dwSize member to the size of the structure (that is, dwSize =
sizeof(DPAPPLICATIONDESC)).

When you are uninstalling an application, you must call the UnregisterApplication()
function. This function removes the game client from the registry.

HRESULT UnregisterApplication(DWORD dwFlags, REFGUID guidApplication);

As you might have guessed, the guidApplication parameter is the GUID of the game
client as it registered it, and the dwFlags parameter is currently reserved and should be
set to 0.

436 Hour 21

29 1634xCH21 11/13/99 11:17 AM Page 436

If a lobby client needs to be able to obtain a list of all the applications that are lobbyable, it
can retrieve this with a call to EnumLocalApplications(). The prototype for this function is:

HRESULT EnumLocalApplications(
LPDPENUMLOCALAPPLICATIONSCALLBACK lpEnumLocalAppCallback,
LPVOID lpContext,
DWORD dwFlags);

This function uses the now familiar call-back method of informing the application of all
game clients that have been registered as lobbyable. You must pass a pointer to a func-
tion with the prototype LPDPENUMLOCALAPPLICATIONCALLBACK to this function via the
lpEnumLocalAppCallback parameter. As you might guess, your call-back function is
called repeatedly, once for each application that is registered. A lobby client would prob-
ably use this function to populate a list box or combo box on a dialog or form in your
lobby client somewhere.

Users, Groups, and Sessions
One of the first things a lobby client will probably do, after connecting with a lobby server
and finding a particular game session, is create a DirectPlay player object to represent the
user. To do this, you will actually use the IDirectPlay4 interface function CreatePlayer().
This function was covered in the previous hour, so you should be familiar with it already. It
is important to remember that a call to this function returns a pointer to a DPID structure.
This structure will be used later to join groups, and send and receive chat messages, as you
will see shortly.

Before a player is created, though, a lobby client will usually call EnumSessions() to
learn about all the sessions in progress at a particular server. The DirectPlay sessions that
you learned how to create in the previous hour will actually represent individual games
in progress or about to be started.

After players are joined to a session, using the Open() function of the IDirectPlay4 object,
they can join groups within the session. Joining a group would be useful if your game was
complex and supported the notion of players grouping together—it wouldn’t be so handy,
say, in a card game. It is possible, using the CreateGroup() and AddGroupToGroup() func-
tions, to create a hierarchy of groups so that it might be possible to have large bands of
groups, each with their own, smaller bands of players participating in one game session. You
might also want to do this to take advantage of the DirectPlay’s built-in multicasting support
so that you can limit in-game messages to a specific group of players or group of groups. An
example of how this might be structured can be seen in Figure 21.2.

Game Central—Creating Lobbies 437

21

29 1634xCH21 11/13/99 11:17 AM Page 437

To find out which groups are gathered within a particular session, you can call the
EnumGroups() function. It has the following prototype:

HRESULT EnumGroups(LPGUID lpguidInstance,
LPDPENUMPLAYERSCALLBACK2 lpEnumPlayersCallback2,
LPVOID lpContext,
DWORD dwFlags);

As you might have guessed, the lpEnumPlayersCallback2 parameter should be a pointer
to the callback function, which will be called for as many groups as there are currently
defined. A lobby client would probably want to do something useful with this function,
such as adding the names of the groups passed to you to a combo box or some other list
control on a dialog somewhere. The LPDPENUMPLAYERSCALLBACK2 function has the fol-
lowing prototype:

BOOL FAR PASCAL EnumPlayersCallback2(
DPID dpid,
DWORD dwPlayerType,
LPCDPNAME lpName,
DWORD dwFlags,
LPVOID lpContext);

Note that the DPID parameter will indicate the group’s ID, and that dwPlayerType will
have the value DPPLAYERTYPE_GROUP, which indicates that the values represent a group.
The lpContext parameter is set to the value passed by the EnumGroups() function. You
can set this to any value you like because it will just simply be passed to your
lpEnumPlayersCallback2 function every time.

438 Hour 21

FIGURE 21.2
DirectPlay grouping
example.

Player A

Player B

Player D

Player EPlayer C

Group A Group B

Group C

29 1634xCH21 11/13/99 11:17 AM Page 438

As you might have guessed, the function, EnumGroupPlayers() takes a similar pointer to
a LPDPENUMPLAYERSCALLBACK2 function and sets the value of dwPlayerType to DPPLAY-
ERTYPE_PLAYER. It, of course, enumerates a list of players in a particular group for you.
The prototype for this function is

HRESULT EnumGroupPlayers(
DPID idGroup,
LPGUID lpguidInstance,
LPDPENUMPLAYERSCALLBACK2 lpEnumPlayersCallback2,
LPVOID lpContext,
DWORD dwFlags

);

You can also call the EnumGroupsInGroup() function to obtain a list of groups within a
group. This function has the following prototype:

HRESULT EnumGroupsInGroup(
DPID idGroup,
LPGUID lpguidInstance,
LPDPENUMPLAYERSCALLBACK2 lpEnumCallback,
LPVOID lpContext,
DWORD dwFlags

);

This function uses a similar LPDPENUMPLAYERSCALLBACK2 type of function pointer. This
function is very similar to the previous functions, and it iterates through the list of groups
within a particular group, represented by idGroup.

After you have decided which session to join and have listed all the groups in each ses-
sion, it’s time to pick a group and add your player to it. To add players to a group, you
use the AddPlayerToGroup() function. It has the following prototype:

HRESULT AddPlayerToGroup(DPID idGroup, DPID idPlayer);

With this call, you can pass the DPID structure representing the group to join, and the
DPID structure representing the player that was initially created by the lobby.

Providing Chat Services
The ability to chat is provided by the DirectPlay interface, IDirectPlay4. The two func-
tions, SendChatMessage(), and Receive() are used in combination by the lobby to send
and receive chat messages, respectively. The prototype for these two functions are similar:

HRESULT SendChatMessage(DPID idFrom, DPID idTo,
DWORD dwFlags, LPDPCHAT lpChatMessage);

HRESULT Receive(LPDPID lpidFrom, LPDPID lpidTo,
DWORD dwFlags, LPVOID lpData, lpdwDataSize);

Game Central—Creating Lobbies 439

21

29 1634xCH21 11/13/99 11:17 AM Page 439

The SendChatMessage indicates to whom the message is to (idTo), and to whom it is
from (idFrom). To send a message to all players in a game session, you can set the
dwFlags parameter to the value DPID_ALLPLAYERS or use the EnumPlayers() function
covered previously to get the DPID of a specific player to send to. The lpChatMessage is
a pointer to a DPCHAT structure, which looks like the following:

typedef struct {
DWORD dwSize;
DWORD dwFlags;
union{
LPWSTR lpszMessage;
LPSTR lpszMessageA;

};
} DPCHAT, FAR *LPDPCHAT;

This structure is fairly simple and should be straightforward. Note that as you might
expect, the dwSize parameter should be set to the size of a DPCHAT structure, and that the
dwFlags parameter is currently unused and should be set to 0. Set the lpszMessageA
pointer to your chat message string for an ANSI type of string, and use the lpszMessage
parameter for a Unicode type of string.

The Receive() function is used to receive any type of DirectPlay message, not just chat-
ting messages. The lpidFrom parameter will be set to DPID_SYSMSG when the message is
a chat message, and the lpData parameter, which points to a DPMSG_GENERIC type of
structure; in this case, it will have a dwType of DPMSG_CHAT (see Listing 21.2).

LISTING 21.2 An Example of Checking for a Chat Type of Message

1: DPID idFrom, idTo;
2: HRESULT hr;
3: LPVOID lpvMsgBuffer;
4: DWORD dwMsgBufferSize;
5: do
6: {
7: idFrom = 0;
8: idTo = 0;
9: hr = lpDirectPlayLobby3A->Receive(&idFrom, &idTo,

➥DPRECEIVE_ALL, lpvMsgBuffer, dwMsgBufferSize);
10: if (hr == DPERR_BUFFERTOOSMALL)
11: {
12: if (lpvMsgBuffer)
13: delete lpvMsgBuffer;
14: lpvMsgBuffer = (VOID*)(new BYTE[dwMsgBufferSize]);
15: if (lpvMsgBuffer == NULL)
16: hr = DPERR_OUTOFMEMORY;
17: }
18: } while (hr == DPERR_BUFFERTOOSMALL);
19: if ((SUCCEEDED(hr)) && (dwMsgBufferSize >= sizeof(DPMSG_GENERIC)))
20: {

440 Hour 21

29 1634xCH21 11/13/99 11:17 AM Page 440

21: if (idFrom == DPID_SYSMSG)
22: {
23: // This must be a system message, let’s see what type
24: if ((LPDPMSG_GENERIC)lpvMsgBuffer->dwType == DPMSG_CHAT))
25: {
26: // Ta Da! It’s a chat type of message, so let’s deal with it
27: // Some sort of chat dealing code here
28: }
29: }
30: }

You should remember when using these functions that although SendChatMessage() is
specific to sending chat type messages, the Receive() function is used to receive any
type of message, including generic system messages and other game messages.

Creating a Session
When it comes time to create a session, you will need to use a DPSESSIONDESC2 structure
that I alluded to earlier. Let’s take a quick look at that structure in Listing 21.3.

LISTING 21.3 The DPSESSIONDESC2 Structure

1: typedef struct
2: {
3: DWORD dwSize;
4: DWORD dwFlags;
5: GUID guidInstance;
6: GUID guidApplication;
7: DWORD dwMaxPlayers;
8: DWORD dwCurrentPlayers;
9: union
10: {
11: LPWSTR lpszSessionName;
12: LPSTR lpszSessionNameA;
13: };
14: union
15: {
16: LPWSTR lpszPassword;
17: LPSTR lpszPasswordA;
18: };
19: DWORD dwReserved1;
20: DWORD dwReserved2;
21: DWORD dwUser1;
22: DWORD dwUser2;
23: DWORD dwUser3;
24: DWORD dwUser4;
25: } DPSESSIONDESC2, FAR *LPDPSESSIONDESC2;

The dwSize value should be set to the size of this structure. The dwFlags member indicates,
among other things, whether the game session is client/server (DPSESSION_CLIENTSERVER) or
peer-to-peer based (the default). It also indicates whether the session is hosted by a secure

Game Central—Creating Lobbies 441

21

29 1634xCH21 11/13/99 11:17 AM Page 441

server (DPSESSION_SECURESERVER); in which case, you would need to set the lpszPassword
value. The guidInstance indicates the GUID for this session and would be returned from
a call to Open() or EnumSessions()—more on these functions in a minute. The
guidApplication represents the GUID for the game client that is appropriate for
this game session. The dwMaxPlayers variable holds the maximum number of players
allowed in this session—set this to 0 to indicate no limit. The dwCurrentPlayers
represents the number of players currently in this session. The session name is stored
in lpszSessionName. As you might have guessed, dwReserved1 and dwReserved2 are
reserved and should be set to 0. The last four members represent user-defined variables
and can be used by the lobby or game client to represent basically anything that you
might want.

You use the Open() function to create or join a lobby session. This function takes a
pointer to a DPSESSIONDESC2 structure, as you can see here:

HRESULT Open(LPDPSESSIONDESC2 lpsd, DWORD dwFlags);

The dwFlags value can be one of DPOPEN_CREATE, DPOPEN_JOIN, or DPOPEN_RETURNSTATUS.
The first two either create a new session based on the information on the passed in session
description, or join an existing session, respectively. The last possible value is interesting
because it allows you to use the Open() function asynchronously. You OR this value in, and
it will return a DPERR_CONNECTING error. It will also cause DirectPlay to show any dialog
boxes indicating connection status. Instead, you must continue to call Open() until you get
a value other than DPERR_CONNECTING, indicating the actual success or failure of the call.

As you will remember from the previous hour, you can use the EnumSessions() function
to retrieve a list of sessions currently in progress. You would then follow this with a call to
Open(), with the guidSession value set and the dwFlags parameter set to DPOPEN_JOIN
when the player has chosen which session to join. It is also important to realize that,
although we covered this topic lastly, you must actually open a session before you can
create a player or send and receive messages.

When the lobby or game server is ready to finally start the game, it will call StartSession(),
which sends a DPMSG_STARTSESSION type of message to the lobby client. This is the signal to
the lobby client that it should now launch the game client to start the game. It accomplishes
this by calling RunApplication(). The prototype for this function is as follows:

HRESULT RunApplication(
DWORD dwFlags,
LPDWORD lpdwAppID,
LPDPLCONNECTION lpConn,
HANDLE hReceiveEvent

);

442 Hour 21

29 1634xCH21 11/13/99 11:17 AM Page 442

The dwFlags parameter is currently reserved and should be set to 0. The lpdwAppID para-
meter is a pointer to a DWORD type variable. This value will be set to an ID identifying the
launched application. This will be used later when the lobby and application communi-
cate with each other. The lpConn parameter is a pointer to a structure of type DPLCONNEC-
TION, which you have already seen. By passing this structure this way, the lobby client
does not need to call SetConnectionSettings() because DirectPlay will call that func-
tion for you.

The hReceiveEvent is a Win32 HANDLE structure, which can be used in combination
with the WaitForObject() or WaitForMultipleObjects() Win32 functions. This handle
represents a synchronization object, which is set by DirectPlay when there is a message
waiting for the lobby to receive, which it can then retrieve with a call to Receive().

Launching a DirectPlay Lobby Application
When the lobby server is ready to start a game session, it launches the game application
on each client machine in the session. It then passes each client the connection settings it
should use to establish the DirectPlay session. That means the game is lobbyable if it
checks for connection settings from the lobby during program initialization, and uses
those settings to immediately join the network session.

Making the Game Lobbyable
So now, let’s add the code to our game client necessary to make the application lobbyable
(see Listing 21.4). You should already have a pointer to an IDirectPlayLobby3 interface,
created from our earlier code sample. We can now get down to the business of obtaining
the communication parameters needed to make our connection.

LISTING 21.4 Getting DirectPlay Connection Settings from a Lobby

1: hr = lpDirectPlayLobby3A->GetConnectionSettings(0, NULL, &dwSize);
2: if (DPERR_BUFFERTOOSMALL != hr)
3: goto FAILURE;
4: // Allocate memory for the connection settings.
5: lpConnectionSettings = (LPDPLCONNECTION)GlobalAllocPtr(GHND, dwSize);
6: if (NULL == lpConnectionSettings)
7: {
8: hr = DPERR_OUTOFMEMORY;
9: goto FAILURE;
10: }
11: // Retrieve the connection settings.
12: hr = lpDirectPlayLobby3A->GetConnectionSettings(0,

➥lpConnectionSettings, &dwSize);
13: if FAILED(hr)
14: goto FAILURE;

Game Central—Creating Lobbies 443

21

29 1634xCH21 11/13/99 11:17 AM Page 443

Note that in the preceding call to GetConnectionSettings() , you are using the test-set-
test method of obtaining data via a buffer that you provide. This method is a way of
calling a function initially to obtain the size of a buffer required to retrieve all the data
the function will give you. By setting the dwSize parameter to 0, and passing a NULL
pointer to a buffer, the first call to GetConnectionSettings() function will inform you
of how large a buffer you will need to obtain all the settings by setting the dwSize para-
meter to the required size value. You can then call GetConnectionSettings() again with
a buffer allocated to the exact size needed. Remember that a lobby client will have called
SetConnectionSettings() to set these connections before launching the game client.

Sending and Receiving Lobby Messages
Remember that one of the advantages to having a lobby client to help the game get launched
is that the lobby client still runs alongside the game client, sitting quietly on the sidelines to
support any communication that isn’t essential to game play. Our game client might want to
send a player’s current score every so often, so it might perform the following:

1: DWORD dwGameScore;
2: DWORD dwGameScoreSize = sizeof(GAMESCORE);
3: HRESULT hr;
4: hr = lpDirectPlayLobby3A->SendLobbyMessage(0, 0,

➥(LPVOID)&dwGameScore, dwGameScoreSize);
5: if (FAILED(hr))
6: goto FAILURE;

It might be wise to use a custom defined structure as your base type for any game client
to lobby client messages, such as:

typedef struct {
DWORD dwSize;
DWORD dwType;

} CUSTOM_MSGTYPE;

This will allow you to check for the size and type of custom message that you will be
sending between lobby client and game client. This is the way that DirectPlay treats
system messages because their content will vary according to type. This way, with a
simple check of the dwType value, you can (rather) safely typecast the message to the
correct structure type. This would require two typecasts: one to typecast to your generic
structure type (to check the dwType value), and the other to typecast to the final, correct
structure type.

This data will be most useful when you are writing your own lobby provider and client.
As I said early in this hour, this data might be key to providing feedback to your players
on how they might be doing in relation to one another. Besides the chat messages, which
are sent from player to player, these types of messages are really not part of standard
game play, but can still be used to enhance the long term value of the game.

444 Hour 21

29 1634xCH21 11/13/99 11:17 AM Page 444

Cleanup
Be sure to call Close() on the DirectPlay object prior to calling Release(). Then, simply
call Release() on both the DirectPlay and DirectPlayLobby interfaces obtained earlier.

Summary
In this hour, you learned how to create an object based on the IDirectPlayLobby3 inter-
face and how to use that object along with the DirectPlay object from the previous hour
to join lobbies and find game sessions. You learned how to send chat messages back and
forth, add users and groups, and send data from the game to the lobby and vice versa.

You also learned how to make a normal DirectPlay game lobbyable, either self-lobbied
or launched by an external lobby. Using the DirectPlay object and lobby objects, your
game is now multiplayer and very interactive! From what you learned this hour, you
should be prepared to market your game to the large online service providers, or even
start an online service yourself.

Q&A
Q I’m confused. To register (and unregister) the application, we need an

IDirectPlayLobby3 interface. How do we get this as part of setup if we’re using,
for example, InstallShield? In particular, how do we provide it for uninstall?

A You can write a small console application and run it from the setup after installing
DirectX. To unregister, create another console application and run it from the
uninstall script before deleting the application files. You can also register with
DirectXRegisterApplication and unregister with DirectXUnRegisterApplication,
which have advantages and disadvantages, so you should read up on them in the
DirectX documentation before selecting the approach that is best for you.

Q I’m planning to write a client/server based game that will always be launched
by a lobby. Where can I learn more about lobby providers?

A To look into writing your own lobby provider, email the DirectX team at Microsoft
for more information. They can provide you with a Lobby Provider Kit, which will
enable you to write your own Lobby Service Provider.

Game Central—Creating Lobbies 445

21

29 1634xCH21 11/13/99 11:17 AM Page 445

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and get you thinking about how to put your knowledge into practice. The
answers to the quiz are in Appendix A, “Answers.”

Quiz
1. How does the game client relay information back to the lobby?

2. How does the lobby pass the connection information needed to a game client?

3. When does the lobby begin running a lobby-aware game, and how does it start it?

4. How does the lobby obtain a list of games that are lobby-aware and that can be
launched by a lobby?

5. How do you create an address representing an Internet based server for a game to
connect to?

6. What is meant by a “lobby-aware” game?

7. Which client can change information about a session?

Exercises
1. Be sure to check out the DirectPlay samples in the DirectX SDK. Most of the samples

are lobby-aware applications, and you can use the test lobby server to get a feel for
how a game will respond with a lobby interface. Be sure to read the instructions on
how to start the lobby server because you need to make changes to your registry to
allow the sample applications to communicate with it.

2. Use the code samples in this and the previous hour to make the cube sample pro-
gram from Hour 7 network aware. That is, have it create a DirectPlay session using
the standard service provider dialogs. You can also use the DirectX SDK samples
as a source.

3. Using your networked cube project, have each application broadcast user commands
rather than execute them, and execute any commands the application receives from
the session.

4. Finally, make your networked cube project lobbyable, register it, and launch it
using the DirectX test lobby server.

446 Hour 21

29 1634xCH21 11/13/99 11:17 AM Page 446

Hour
22 Adding Video with DirectShow

23 Bring Surfaces to Life with
DirectTransform

24 Integrating Media Into Web Pages with
DirectAnimation

PART VIII
The DirectMedia SDK

30 1634xPart VIII 11/13/99 11:16 AM Page 447

30 1634xPart VIII 11/13/99 11:16 AM Page 448

HOUR 22
Adding Video with
DirectShow

DirectShow is the part of DirectX Media that allows you to playback multi-
media streams such as MPEG, AVI and Apple QuickTime from local files or
the Internet. DirectShow is accessed via COM in the same way as most
other DirectX components.

In this hour, you will learn

• What filters are, how they work, and what filters are available.

• How to stream multimedia from the Internet.

• How to string filters together to perform different playback operations.

• How to playback video-based media to any DirectDraw surface.

• How to playback video-based media with sound.

31 1634xCH22 11/13/99 11:18 AM Page 449

Introducing DirectShow
DirectShow is not, as the name suggests, a single technology. It’s made of several differ-
ent COM interfaces, all of which support different forms of multimedia playback and
capture. DirectShow can do all these things because of a clever technology called filters.
The logical definition of a filter is something that performs an operation on some kind of
data and produces an altered output. For example, you could have a filter decompress an
AVI video file and then pass the data to a render filter, which in turn would draw the
decompressed video data onto a DirectDraw surface. This DirectDraw surface could in
turn be used to texture map a 3D model of a TV in your Direct3D based game.

An extreme case could also be streaming live satellite video feed from an Internet URL
filter, which could then be processed by an AVI compression filter before being rendered
by a disk file filter, effectively saving the live video feed as an AVI file.

Filters are managed by an object known as the filter graph. The filter graph is what
makes the different filters work together to produce the desired output (see Figure 22.1).
You simply add filters to the filter graph, and it will make sure the stream data is
processed by the appropriate filters, creating the desired output.

450 Hour 22

FIGURE 22.1
How the filter graph
works.

Media
Source

Source
Filter

Transform
Filter

Renderer
Filter

Media
Destination

Many different filters are included in the DirectX Media SDK, and you can even create
your own. Consult your DirectX Media documentation for information and samples
about how to use the different filters.

In this hour, I will only cover using filters to render video streams. No capture or modifi-
cation filters will be covered because it’s beyond the scope of this hour.

In my many years of game programming, I’ve found that DirectShow is almost exclu-
sively used to render video streams to a DirectDraw surface so that’s what I’m going to
show you.

Video Playback Capabilities
DirectShow, as mentioned, has many video playback capabilities. Here are a few of the
most popular:

• MP3 music. A highly compressed audio stream of high quality.

• MP2 video (including DVD movies).

31 1634xCH22 11/13/99 11:18 AM Page 450

• MP1 video.

• RealAudio and video.

• AVI video. Microsoft’s Audio Video Interleaved format.

• Playback to a full screen DirectDraw surface.

• Playback of most popular Internet audio and video formats via the new Media
Player ActiveX control, which can easily be embedded in Web pages and can be
made to work with both Internet Explorer and Netscape. (This is covered in the
next section.)

Internet Streaming Video Applications
As mentioned before, DirectShow can be made to stream multimedia data from an
Internet URL in your COM-based application, or you can embed the Media Player
ActiveX control directly inside your Web pages.

In this section, I’ll give you a small sample on how to stream and interact with a video
clip with sound from inside a Web page.

Adding Video with DirectShow 451

22

When streaming from the Internet, note that the Media Player ActiveX con-
trol differs between streaming and nonstreaming formats.

Choosing a 20MB video stream in AVI format would cause Media Player to
download the entire file before playing it, and that would probably anger
any visitor to your Web site who does not have a 2MB connection.

Some streaming formats:

MPEG-1, MPEG-2, MPEG-3, ASF (Advanced Streaming Format), VOD (Video
On Demand), RA (Real Audio) version 4, and RV (Real Video) version 4.

Some nonstreaming formats:

AVI, MOV, MIDI, WAV, SND, and Indeo 5.

Using the Media Player ActiveX control is easy. Listing 22.1 contains the code that will
help you use it. (Don’t worry about the parameters because I’m going to explain them in
a moment.)

LISTING 22.1 Using the Media Player ActiveX Control

1: <OBJECT ID=”MyMediaPlayer”
2: classid=”CLSID:22D6F312-B0F6-11D0-94AB-0080C74C7E95”

continues

31 1634xCH22 11/13/99 11:18 AM Page 451

3: CODEBASE=”http://activex.microsoft.com/activex/controls/
➥mplayer/en/nsmp2inf.cab#Version=5,1,52,701”

4: standby=”Loading Microsoft® Windows® Media Player components...”
5: type=”application/x-oleobject”>
6: <PARAM NAME=”AnimationAtStart” VALUE=”0”>
7: <PARAM NAME=”ShowControls” VALUE=”0”>
8: <PARAM NAME=”AutoStart” VALUE=”0”>
9: <PARAM NAME=”VideoBorderWidth” VALUE=”5”>
10: <PARAM NAME=”VideoBorderColor” VALUE=”255”>
11: </OBJECT>

And that’s it for adding a window capable of showing multimedia content in your Web
site. Simply place this piece of code where you want the window to be.

Now for the promised parameter explanation:

The Media Player ActiveX control is placed inside an OBJECT block which must start
with <OBJECT ID=”XX”> and end with </OBJECT> just like standard HTML tags.

The OBJECT ID is the name you’ll use to access the Media Player control from script
languages such as VBscript (Visual Basic script) and JScript (JavaScript). This can be
any identifier you want (for example: MyMediaPlayer).

Just as DirectX COM objects need a unique identifier, so does the Media Player control.
That’s the CLASSID parameter.

The CODEBASE parameter is just like the one in Java. It specifies where the code for the
specified object is. (The URL where the control is placed.)

STANDBY almost specifies what it does all by itself. It’s just the message displayed, when
the Control is loading.

TYPE is the type of the embedded object. All kinds of objects can be embedded in Web
pages, so they need to specify a type that the browser can use to identify them and exe-
cute them properly. In this case it’s an application/OLE object, identifying this as an
ActiveX control.

Now comes a bunch of <PARAM> tags. The ones used in this example are but a few of the
many parameters you can pass the Media Player. See your Direct Media SDK documen-
tation for a more comprehensive list.

<PARAM NAME=”AnimationAtStart” VALUE=”0”>

Do not show normal controls such as Play, stop, and so on.

<PARAM NAME=”AutoStart” VALUE=”0”>

452 Hour 22

LISTING 22.1 continued

31 1634xCH22 11/13/99 11:18 AM Page 452

Do not auto start the media stream.

<PARAM NAME=”VideoBorderWidth” VALUE=”5”>

Place a five-pixel border around the control.

<PARAM NAME=”VideoBorderColor” VALUE=”255”>

Set the border color to RED.

As you can see, we have set the Media Player control to hide its controls and not do any-
thing. We want to control the action ourselves.

I use JavaScript for this example because it runs in Netscape too. (See your
DirectXMedia SDK documentation for Visual Basic script examples.)

First we create play, pause, and stop buttons. We also include an about button, so people
can get information about the Control and its version.

<INPUT TYPE=”BUTTON” NAME=”PlayBtn” VALUE=”Play” OnClick=”PlayStream()”>
<INPUT TYPE=”BUTTON” Name=”PauseBtn” VALUE=”Pause” OnClick=”PauseStream()”>
<INPUT TYPE=”BUTTON” NAME=”StopBtn” VALUE=”Stop” OnClick=”StopStream()”>
<INPUT TYPE=”BUTTON” NAME=”AboutBtn” VALUE=”About Player Control” OnClick=
➥”MyMediaPlayer.AboutBox()”>

What we basically do here is name four buttons and tie a JavaScript function to their
OnClick handler.

An OnClick handler performs an action when an HTML object is clicked on.
Can be tied to most HTML objects, including Web links and images.

Now on to the JavaScript code: To implement the button’s OnClick handlers, look at
Listing 22.2.

LISTING 22.2 OnClick Handlers

1: // Start media playback
2: function PlayStream()
3: {
4: // Set Media Player filename to the value of the MediaFile box.
5: MyMediaPlayer.FileName=MediaFile.value;
6:
7: // Start the playback
8: MyMediaPlayer.Play();
9: }
10:
11: // Pause media playback.
12: // If the stream is paused restart it.

Adding Video with DirectShow 453

22

continues

NEW TERM

31 1634xCH22 11/13/99 11:18 AM Page 453

13: function PauseStream()
14: {
15: // Check if we are paused
16: if (MyMediaPlayer.PlayState==1)
17: {
18: // We are paused. Restart playback.
19: MyMediaPlayer.Play();
20: }
21: else
22: {
23: // We are not paused. Pause playback.
24: MyMediaPlayer.Pause();
25: }
26: }
27:
28: // Stop streaming and reset to start of title
29: function StopStream()
30: {
31: // Stop playback
32: MyMediaPlayer.Stop();
33:
34: // Set position to 0 (Beginning of stream)
35: MyMediaPlayer.CurrentPosition = 0;
36: }

But how do you stream media from the Internet in a C++ application? That requires a
more thorough investigation of the filter graph, which is the topic of the next section.

Graph Filters
As mentioned before, graph filters are modules used together in a sequence to take a
media stream, process it, and output it to some form of media or device. Most filters can
be categorized as follows:

• Source Filter—Takes media data from a source such as a file, an URL, or a VCR
and inserts it into the Filter Graph.

• Transform Filter—Takes the media data, processes it, and then passes it along.

• Rendering Filter—Usually renders the media data to some form of graphical hard-
ware device, but the data could be rendered to a file.

When filters are connected to perform a certain action, it’s called a filter graph. Filter
graphs are managed by something called the filter graph manager, which abstracts filter
graph construction and hides the details of filter graph construction, so let’s look at how
to use it.

454 Hour 22

LISTING 22.2 continued

31 1634xCH22 11/13/99 11:18 AM Page 454

Stringing Filters Together
Filters are assembled into a filter graph and, in turn, are controlled by the filter graph
manager. In order for the filter graph to work, filters must be introduced into the graph in
the proper order. For example, you add the source filter, the transform filter, and then the
render filter. The media stream must also be started and stopped in the correct order.

The filter graph connects filters and controls the media stream. It can also return data to
the application, and it can search for supported filters. You can also use the filter graph
manager utility provided with the DirectX Media SDK, although that’s beyond the scope
of this hour.

Filters are connected by something called pins. A pin is a connection between two filters
and is either of type input or type output. As shown in Figure 22.2, a source filter would
typically expose only an output pin because it only passes data on, whereas a transform
filter would have input and output pins because it accepts both input from one filter and
outputs to another filter.

Adding Video with DirectShow 455

22

Output
Pin

Output
Pin

Input
Pin

Input
Pin

Transform
Filter

Renderer
Filter

Source
Filter

FIGURE 22.2
Filters and pins.

Pins are needed to translate data between filters. Every filter must present data in a unified
form, so the pins translate the data to their respective filter’s internal data format.

Figure 22.3 shows how a typical filter graph might look.

FIGURE 22.3
A typical filter graph
for rendering MPEG
video.

MPEG Audio
decompression

filter

Audio
render
filter

MPEG
splitter
filter

File or URL
source filter

MPEG Video
decompression

filter

Video
render
filter

As you can see, filters are very flexible and can be tweaked to provide virtually every
possible form of media processing. If it’s not enough, you can write your own filters and
pins, but that requires making COM components, so it won’t be covered here. But don’t
worry; you are not going to need it for most applications. As a matter of fact, we will not
even use filters in our sample DirectShow application. Well, actually we will, but we’ll
let DirectShow build them for us.

31 1634xCH22 11/13/99 11:18 AM Page 455

Sample DirectShow Application
The sample DirectShow application I’ve prepared plays back a full screen video
sequence with sound. The video clip is borrowed from the DirectX Media SDK samples.
It loops the video stream, and if you task switch, the surfaces will be automatically
restored when you switch back.

I’ve provided a Windows/DirectX class wrapper and stuffed it away in a separate file, so
I won’t confuse you when going through the playback code and the actual DirectShow
class. I’ve also written a complete DirectShow class wrapper, which can render a multi-
media video stream with sound to any DirectDraw surface.

So, you don’t even have to read the next section to play video, but you’ll learn a lot more
if you stick with me through it.

Initializing DirectShow
Initializing DirectShow is not a whole lot different than the rest of the DirectX compo-
nents. The first thing we need to do is call CoInitialize(NULL) to initialize the COM
libraries. If we forget this, all calls to QueryInterface will fail. Then we need to create a
multimedia stream object.

456 Hour 22

Note the use of the FAILED macro. It is suggested that with COM, always use
the SUCCESS and FAILED macros because a COM object might have multiple
error values and 1=TRUE and 0=FALSE is reversed in COM.

// Multimedia stream pointer
IAMMultiMediaStream *pAMStream;

// Create Multimedia stream object
if (FAILED(CoCreateInstance(CLSID_AMMultiMediaStream, NULL,

CLSCTX_INPROC_SERVER,
IID_IAMMultiMediaStream, (void **)&pAMStream)))

{
// Show error message
MessageBox(GetActiveWindow(),”Could not get IAMMultimedia interface!”,
➥”FATAL ERROR”,MB_ICONSTOP|MB_OK);

// Return FALSE to let caller know we failed.
return FALSE;

}

Then we try to initialize the multimedia stream.

31 1634xCH22 11/13/99 11:18 AM Page 456

// Initialize Multimedia stream object
if (FAILED(pAMStream->Initialize(STREAMTYPE_READ, 0, NULL)))
{

// Show error message
MessageBox(GetActiveWindow(),”Could not setup stream for read!”,

“FATAL ERROR”,MB_ICONSTOP|MB_OK);

// Return FALSE to let caller know we failed.
return FALSE;

}

That’s all we need to initialize DirectShow. Next we need to set up the multimedia
stream.

Setting Up the Filter
First we add video playback to the Multimedia stream. When MSPID_PrimaryVideo is
added, it uses the first parameter as the target surface for video playback. Note that what
we actually do here is add the filters, but because we won’t need any special abilities,
we’ll just let DirectShow manage it all for us.

// Add primary video stream.
if (FAILED((pAMStream->AddMediaStream(pDD, &MSPID_PrimaryVideo, 0, NULL))))
{

// Show error message
MessageBox(GetActiveWindow(),”Could add primary video stream!”,

“FATAL ERROR”,MB_ICONSTOP|MB_OK);

// Return FALSE to let caller know we failed.
return FALSE;

}

Now we add a sound renderer to the Multimedia stream. Note the flag AMMSF_ADDDE-
FAULTRENDERER. This specifies that we want to output to the default sound renderer.
From now on, we don’t need to do any more to play sound. It will happen automatically.

// Add default sound render to primary video stream,
// so sound will be played back automatically.
if (FAILED(pAMStream->AddMediaStream(NULL, &MSPID_PrimaryAudio,

AMMSF_ADDDEFAULTRENDERER, NULL)))
{

// Show error message
MessageBox(GetActiveWindow(),”Could not add default sound render!”,

“FATAL ERROR”,MB_ICONSTOP|MB_OK);

// Return FALSE to let caller know we failed.
return FALSE;

}

Adding Video with DirectShow 457

22

31 1634xCH22 11/13/99 11:18 AM Page 457

Next we need to convert the filename to UNICODE so the OpenFile function will accept
it:

// Convert filename to UNICODE.
// Notice the safe way to get the actual size of a string.
WCHAR wPath[MAX_PATH];
MultiByteToWideChar(CP_ACP, 0, pFileName, -1, wPath,

sizeof(wPath)/sizeof(wPath[0]));

It had to come, and here it is. This is where we build the filter graph:

// Build the filter graph for our multimedia stream.
if (FAILED((pAMStream->OpenFile(wPath, 0))))
{

// Show error message
MessageBox(GetActiveWindow(),”Could not open file!”,

“FATAL ERROR”,MB_ICONSTOP|MB_OK);

// Return FALSE to let caller know we failed.
return FALSE;

}

Setting Up the File Stream
First we assign the multimedia stream pointer to our global pointer, which in this case is
a member of our video player class. We also need to increase the reference count for the
file.

// Assign member to temporary stream pointer.
m_pMMStream = pAMStream;

// Add a reference to the file
pAMStream->AddRef();

Now we need to create a stream sample object to be associated with our offscreen
DirectDraw surface. To get the stream sample, we need to get the Primary Video Stream
interface.

// Get media stream interface
if (FAILED(m_pMMStream->GetMediaStream(MSPID_PrimaryVideo,

&m_pPrimaryVideoStream)))
{

// Show error message
MessageBox(GetActiveWindow(),

“Could not get Primary Video Stream interface!”,
“FATAL ERROR”,MB_ICONSTOP|MB_OK);

return FALSE;
}

458 Hour 22

31 1634xCH22 11/13/99 11:18 AM Page 458

Now that we have the Primary Video Stream interface, we use it to query for the
IdirectDrawMediaStream interface, which we will use to get our stream sample.

// Get DirectDraw media stream interface
if (FAILED(m_pPrimaryVideoStream->QueryInterface(

IID_IDirectDrawMediaStream,
(void **)&m_pDDStream)))

{
// Show error message
MessageBox(GetActiveWindow(),

“Could not get DirectDraw media stream interface!”,
“FATAL ERROR”,MB_ICONSTOP|MB_OK);

return FALSE;
}

Now we can get the sample.

// Create stream sample
if (FAILED(m_pDDStream->CreateSample(NULL,NULL,0,&m_pSample)))
{

// Show error message
MessageBox(GetActiveWindow(),”Could not create stream sample!”,

“FATAL ERROR”,MB_ICONSTOP|MB_OK);

return FALSE;
}

Each sample obtained its own DirectDraw surface and clipping rectangle. We’ll save the
clipping rectangle in the member variable m_rSrcRect because we will need it later for
blitting the video stream to the screen. We also get the DirectDraw surface attached to
the sample.

// Get DirectDraw surface interface from Sample.
if (FAILED(m_pSample->GetSurface(&m_pDDSurface,&m_rSrcRect)))
{

// Show error message
MessageBox(GetActiveWindow(),

“Could not get IDirectDrawSurface interface from stream sample!”,
“FATAL ERROR”,MB_ICONSTOP|MB_OK);

return FALSE;
}

We use the sample surface to get a IDirectDrawSurface4 for our video stream, which
we will use to blit to the screen later. Note that the sample and this surface are connected
now. Later when we update the sample, this surface will be updated automatically.

// Get DirectDraw surface4 interface
if (FAILED(m_pDDSurface->QueryInterface(IID_IDirectDrawSurface4,

Adding Video with DirectShow 459

22

31 1634xCH22 11/13/99 11:18 AM Page 459

(void**)&m_pDDSurface4)))
{

// Show error message
MessageBox(GetActiveWindow(),

“Could not get IDirectDrawSurface4 interface!”,
“FATAL ERROR”,MB_ICONSTOP|MB_OK);

return FALSE;
}

Then we set a global flag, identifying that the stream is now open.

// Ok. Media is open now.
m_bMediaOpen=TRUE;

And that’s it. Now we are ready to actually draw something.

Streaming the Movie
First we need to start the movie. In the video class provided, I have implemented start
and stop functions. For simplicity, I’ll list only the function used to start the video play-
back.

// Start video playback
BOOL CDShow::Start()
{

// Return FALSE if media was not open
if (!m_bMediaOpen) return FALSE;

// Set stream position to zero
m_pMMStream->Seek(0);

// Set state to playback
m_pMMStream->SetState(STREAMSTATE_RUN);

// Set playing to TRUE
m_bPlaying=TRUE;

// Everything went ok. Return TRUE.
return TRUE;

}

Note how we set a global member, specifying that the stream is now playing. It will
come in handy later, as we’ll loop the video when it’s done. (See the sample source
code.)

460 Hour 22

31 1634xCH22 11/13/99 11:18 AM Page 460

Now let’s get on with the drawing. Included in the following code snippet is the Draw
function of our video playback class. We simply call the Update function of our media
sample. Note that we set m_bPlaying to FALSE if it fails because that means the video
clip has ended.

Then we simply blit the surface we linked to the sample object, and the video will be
drawn. Note that we pass a surface that should receive the media stream and a destina-
tion rectangle. If the destination rectangle is larger than the stream, it will be stretched. A
typical game video would be 320×240, stretched to 640×480.

// Draw video to DirectDraw surface.
BOOL CDShow::Draw(LPDIRECTDRAWSURFACE4 lpDDSurface4, RECT rDestRect)
{

// Return FALSE if media was not open
if (!m_bMediaOpen) return FALSE;

// Update media stream.
// If it does not return S_OK, we are not playing.
if (m_pSample->Update(0,NULL,NULL,0)!=S_OK) m_bPlaying=FALSE;

// Now blit video to specified surface and rect.
// Restore surface if lost.
if (lpDDSurface4->Blt(&rDestRect,m_pDDSurface4,

&m_rSrcRect,DDBLT_WAIT,NULL)==DDERR_SURFACELOST)
lpDDSurface4->Restore();

// Ok. return TRUE.
return TRUE;

}

And that’s it. Now all we need is to stop the movie and clean up after ourselves.

Cleanup
Fortunately, cleaning up is easy. Here is the cleanup function:

// CleanUp function.
// Called automatically upon object destruction.
void CDShow::CleanUp()
{

// Reset media open
m_bMediaOpen=FALSE;

// Set playing to FALSE
m_bPlaying=FALSE;

// Release allocated interfaces
SAFE_RELEASE(m_pPrimaryVideoStream);
SAFE_RELEASE(m_pDDStream);

Adding Video with DirectShow 461

22

31 1634xCH22 11/13/99 11:18 AM Page 461

SAFE_RELEASE(m_pSample);
SAFE_RELEASE(m_pDDSurface);
SAFE_RELEASE(m_pDDSurface4);
SAFE_RELEASE(m_pMMStream);

// Uninitialize COM libraries
CoUninitialize();

}

You are probably no stranger to SAFE_RELEASE by now, so I won’t go into details of that
one. Then we call CoUninitialize(); to unload COM libraries and we’re finished.
Easy, huh?

Summary
In this hour, you learned about DirectShow, and how to use it to render a video stream to
any DirectDraw surface. You also learned a bit about the inner workings of DirectShow
and about filters and filter graphs. So to wrap it up, you’re now ready to add video to
your DirectX based games.

Q&A
Q Can I render DirectShow video streams onto ANY DirectDraw surface?

A Yes. You can render to any DirectDraw surface you want, including Direct3D tex-
tures.

Q Will the Media Player ActiveX control work with browsers other than
Internet Explorer?

A The Media Player ActiveX control will work in all browsers that support ActiveX
controls. That means Internet Explorer, but it’s also possible to make it work with
Netscape. See your Direct Media SDK documentation on how to do this.

Q If I want to make an animated logo using an AVI video clip, can I use color
keying?

A Yes. Simply set the color key of the DirectX Surface of your sample stream object.

Q I noticed you used DirectDrawSurface4 rather than DirectDrawSurface7.
Why?

A DirectX Media is a separate SDK that ships with DirectX but lags behind the
DirectX SDK itself. In fact, DirectX 7 includes DirectX Media SDK version 6.0,
which is as yet unaware of DirectX 7 interfaces.

Q Oh. Is that a problem?

462 Hour 22

31 1634xCH22 11/13/99 11:18 AM Page 462

A It depends on what you’re doing. For Web pages, it’s no problem, but for game
applications dedicated to DirectX 7 interfaces (remember, COM ensures you can
use the older interfaces) it could cause problems. If you use DirectDraw7 and
DirectDrawSurface7, it will compile, link, and run, but you’ll get error reports in
the debug window, and this could lead to compatibility problems with some hard-
ware or drivers. Some developers choose to avoid this risk by excluding all forms
of movie play and using engine cinematics instead.

Workshop
The workshop will enable you to test yourself on what you have learned in this hour and
get you thinking about how to apply this knowledge in a real life application. The
answers to the quiz are in Appendix A, “Answers.”

Quiz
1. What is a DirectShow filter?

2. What is a DirectShow pin?

3. What happens if the destination rectangle of a DirectShow stream is larger than
that of the stream itself?

4. Mention a few streaming and nonstreaming DirectShow supported media formats.

5. What would happen if you put a 20MB nonstreaming video on your homepage?

Exercises
1. Modify the cityscape from Hour 17, “Introducing DirectInput—Getting User

Input,” to display a video billboard on one of the buildings. (Hint: Give one house
different textures on each side and let one of them be a video stream.)

2. Make a cool menu for your own game, and let the logo be a color keyed video
stream. (Hint: Use any animation program that can save to AVI or MPEG.)

Adding Video with DirectShow 463

22

31 1634xCH22 11/13/99 11:18 AM Page 463

31 1634xCH22 11/13/99 11:18 AM Page 464

HOUR 23
Bring Surfaces to Life
with DirectX Transform

by Sam Christiansen and Sylvia Mollerstrom

DirectX Transform is the part of the DirectX Media SDK that lets you ani-
mate, blend, and distort two-dimensional images and three-dimensional
mesh objects. DirectX Transform helps you write transforms, which are a set
of instructions that take zero (or more) graphical or 3D mesh inputs and
result in one graphical or 3D mesh output. For example, in this hour, you
will learn how to write a Wipe Transform that creates an animated transition
between two images. This transform takes two different images as inputs
and results in one single output image that is, by varying degrees, a compos-
ite of the two input images.

DirectX Transform is a powerful tool that can help you create things like
Adobe PhotoShop filters and animated content for Web pages. You can take
transforms that you write with DirectX Transform and create the above
things without modifying the transforms in any way—part of the beauty of

32 1634xCH23 11/13/99 11:19 AM Page 465

DirectX Transform is that it does everything for you automatically! To get you started
with using and writing transforms, this hour will help you work with DirectX Transform
inside of your DirectX application.

In this hour, you will

• Learn about the power of DirectX Transforms

• Learn about the DXSurface object

• Learn how to create special effects using DirectX Transforms

• Learn how to use DirectX Transforms in your application

The Power of DirectX Transform
DirectX Transform is so powerful because it combines two concepts that are normally at
opposite ends of the computer experience. Because it comes with many pre-built trans-
forms, it is easy to use if you want to just dabble in it; however, it is also easily extensi-
ble so that you can quickly move beyond the basics and into some powerful issues by
writing your own transforms. Normally when you want to create smooth transitions
between graphics, you have to worry about many details. With DirectX Transform, all
these details are taken care of so that you only have to worry about doing exactly what
you want!

The following are some of the highlights of DirectX Transform:

• With DirectX Transform, you can use many different file formats (such as .GIF,
.JPEG, and .BMP). DirectX Transform automatically converts the images to a ver-
sion that it can read.

• DirectX Transform is easy to use, yet extensible: it comes with many pre-built
transforms, or you can write your own.

• DirectX Transform allows you to easily create transition type transforms. Normally,
artists would have to draw every frame of the transition; even if the artist uses a
computer, the computer will use up a lot of memory in order to draw each frame of
the animation. But, with DirectX Transform, you only need two input surfaces. This
saves you both time and space when transitioning.

• DirectX Transform helps you write procedural surfaces. These are surfaces that
store functions instead of an array describing each pixel of an image. Because pro-
cedural surfaces do not have to store information for each pixel, they let you create
naturalistic patterns (like marble or wood), and they use even less space!

• DirectX Transform lets you scale your transforms to hardware. So, you can take
advantage of fast hardware to make your transforms look even better.

466 Hour 23

32 1634xCH23 11/13/99 11:19 AM Page 466

A Versatile DirectDraw Surface: IDXSurface
The DXSurface is at the heart of DirectX Transform. The DXSurface is an object that
usually wraps a DirectDrawSurface object. In other words, at the core of each
DXSurface, there is a DirectDrawSurface. The DXSurface takes care of all the details of
a DirectDrawSurface, thereby allowing you to concentrate on other things (such as cre-
ating transforms). This is great for programmers because it means that they can be more
productive. As you will see, DXSurfaces are very easy to work with.

Although we won’t use them much, here is a list of the more important functions pro-
vided by the IDXSurface interface:

• GetBounds() is used to retrieve the surface’s bounding area.

• GetColorKey() is used to retrieve the surface’s color key value (the transparent
color of the image).

• GetDirectDrawSurface() is used to retrieve a surface’s DirectDrawSurface
object.

• GetPixelFormat() is used to retrieve the surface’s pixel format.

• LockSurface() is used to lock the surface and obtain a pointer to the surface’s
image data.

• SetColorKey() is used to set a surface’s color key.

For many of the things you will want to do with DirectX Transform, you probably won’t
use any of these functions. For a complete list of all the methods (and their parameters)
available in the IDXSurface interface, you should consult the DirectX Media SDK docu-
mentation.

Creating a DXSurface
Creating a DXSurface is easy. You can do it in two steps: first, create an
IDXSurfaceFactory and then use the factory object to create as many surfaces as you
like. Later in this hour, you will go through creating an IDXSurfaceFactory. However,
for now, assume that you have already created the IDXSurfaceFactory object. After you
have this object, in order to create a new DXSurface, you simply call the
IDXSurfaceFactory::CreateSurface() function.

The Syntax for IDXSurfaceFactory::CreateSurface()
HRESULT CreateSurface(

IUnknown *lpDirectDraw,
const DDSURFACEDESC *lpSurfaceDesc,
const GUID *lpPixelFormatID,
const DXBNDS *lpDXBounds,

Bring Surfaces to Life with DirectX Transform 467

23

SY
N

TA
X

,

32 1634xCH23 11/13/99 11:19 AM Page 467

DWORD dwFlags,
IUnknown *lpOuter,
REFIID riid,
(void**)lpDXSurface

);

Parameters:

lpDirectDraw Address of the DirectDraw object the factory
should use to create the surface. Can be NULL;
in which case, the factory’s DirectDraw
object will be used.

lpSurfaceDesc Address of a DDSURFACEDESC object that
describes the desired surface. Can be NULL.

lpPixelFormatID Address of the desired pixel format. If NULL,
the pixel format of the display will be used.

lpDXBounds Address of a DXBNDS object containing the
desired width, height, and depth of the sur-
face.

dwFlags Optional creation flags.

lpOuter Optional IUnknown interface pointer.

riid Interface of the new surface. This is
IID_IDXSurface for a DXSurface object.

lpDXSurface A pointer to the address of the new
DXSurface object.

Don’t let all those parameters overwhelm you! For most surfaces, all you need to specify
are the bounds (the width, height, and depth) of the surface.

Reading Graphics from Various File Formats
In most cases, instead of creating an empty surface, you will want to create a surface and
then load an image into it. DirectX Transform lets you do this in one easy step: all you
have to do is call the LoadImage() function.

LoadImage() is a member function of the DXSurfaceFactory object, and it supports most
of the common file formats (.GIF, .JPEG, .BMP, and more). One of the great things
about DirectX Transform is that when you have loaded an image, it is treated like a nor-
mal DXSurface, regardless of what file format it was originally.

468 Hour 23

,

,

32 1634xCH23 11/13/99 11:19 AM Page 468

The Syntax for IDXSurfaceFactory::LoadImage()
HRESULT LoadImage(

const LPWSTR wFileName,
IUnknown *lpDirectDraw,
const DDSURFACEDESC *lpSurfaceDesc,
const GUID *lpPixelFormat,
REFIID riid,
(void**) lpDXSurface

);

Parameters:

wFileName Unicode string containing the file name of the
image to load.

lpDirectDraw Address of the DirectDraw object the factory
should use to create the surface. Can be NULL; in
which case, the factory’s DirectDraw object will
be used.

lpSurfaceDesc Address of a DDSURFACEDESC object that describes
the desired surface. Can be NULL.

lpPixelFormat Address of the desired pixel format.

riid Interface of the new surface. This is
IID_IDXSurface for a DXSurface object.

lpDXSurface A pointer to the address of a DXSurface object.

Bring Surfaces to Life with DirectX Transform 469

23

,
SY

N
TA

X

,

The first parameter of the LoadImage() function is a Unicode string. To con-
vert an ANSI string to a Unicode string, use the mbstowcs() function.

Automatic Color Conversion
You have just seen how DXSurfaces simplify image loading. Another useful feature
incorporated in DXSurfaces is color conversion. Regardless of the pixel format of the
image you load, the DXSurface will automatically convert it to the appropriate pixel for-
mat for you.

The two different pixel formats that DXSurfaces use are ARGB32 and PMARGB32. Both of
these pixel formats contain alpha, red, green, and blue data. The red, green, and blue
data affect the color of the pixel. The alpha value is the measure of a pixel’s opacity. If
the alpha value is zero, the pixel is clear. If the alpha value is the maximum alpha value,

32 1634xCH23 11/13/99 11:19 AM Page 469

the pixel is opaque. If the alpha value is somewhere in between these two extremes, the
pixel would be translucent so that it would allow the pixel beneath it to show through.

The PM in PMARGB32 stands for pre-multiplied. Blending two images together using their
alpha values is a mathematically intense operation, so it can take the computer a long
time to do. Alpha pre-multiplication is a technique used to speed up the blending
process. Using this technique, each pixel’s red, green, and blue color components are
scaled by the pixel’s alpha value. In other words, the red, green, and blue color compo-
nents are multiplied by the alpha value and then the new values are stored so that the
computer does not have to multiply out the components each time. It is not important to
know how DirectX Transform does this; however, it is important to remember that sur-
faces in the PMARGB32 format will provide better performance when you use them in
blending operations.

Special Effects: DirectX Transforms
Now that you have learned how to create IDXSurfaces, the next step is to learn how to
manipulate them in order to create special effects. The real power of DirectX Transform
is that these effects are essentially free. In other words, DirectX Transforms use algo-
rithms to create the animations you see in real time so that you can simply use a single
frame and get DirectX Transform to perform the animation for you. This is much more
convenient than the old way of spending hours drawing each individual frame of an ani-
mation.

To create a DirectX Transform, follow these two steps:

1. Create a Transform Factory

2. Use the Transform Factory to create a DirectX Transform

DirectX Transform extends the idea of a transform to both 2D and 3D. In 2D, the trans-
forms use surfaces. In 3D, the transforms use 3D meshes. In addition, DirectX
Transforms can be used to make procedural surfaces.

Creating the Transform Factory
In order to access transforms, you need to create a DirectX Transform Factory. You can
think of the factory as an interface that helps you create an object; you ask the factory to
create a new object, and the factory creates the object and returns it to you. It probably
won’t surprise you to hear that you use COM to create the transform factory.

470 Hour 23

32 1634xCH23 11/13/99 11:19 AM Page 470

To create a transform factory, you call the COM function CoCreateInstance(), as
shown in Listing 23.1.

LISTING 23.1 Creating the Transform Factory

1: IDXTransformFactory* lpTransformFactory = NULL;
2: HRESULT hres;
3:
4: CoInitialize(NULL);
5:
6: // create the transform factory:
7: hres = CoCreateInstance(CLSID_DXTransformFactory,
8: NULL,
9: CLSCTX_INPROC,
10: IID_IDXTransformFactory,
11: (void**)&lpTransformFactory);

The first argument, CLSID_DXTransformFactory, tells COM which class you want to cre-
ate an instance of. In this case, you want to create a DXTransformFactory. The second
argument is a pointer to an IUnknown object, which is NULL in this case. The third argu-
ment, CLSCTX_INPROC, tells COM that you want the execution context to be in-process,
as opposed to local (CLSCTX_LOCAL) or remote (CLSCTX_REMOTE). The next parameter,
IID_IDXTransformFactory, tells COM which interface you want to use; in this case, it is
an IDXTransformFactory. Finally, you pass the address of a pointer to the factory that
will be created (in this case, &lpTransformFactory).

Using the Factory to Access Transforms
When you have created a transform factory, it is easy to use the factory to create trans-
forms. All you have to do is call the CreateTransform() function, and the factory will
create the new transform.

The syntax for IDXTransformFactory::CreateTransform()
HRESULT CreateTransform(

IUnknown **Inputs,
ULONG NumInputs,
IUnknown **Outputs,
ULONG NumOutputs,
IPropertyBag *InitialProp,
IErrorLog *ErrorLog,

Bring Surfaces to Life with DirectX Transform 471

23

Before you make any COM calls to create the transform factory, it is impor-
tant to call the CoInitialize() function. This function will initialize COM so
that COM function calls can be used by our application.

SY
N

TA
X

,

32 1634xCH23 11/13/99 11:19 AM Page 471

REFCLSID TransformCLSID,
REFIID TransformIID,
void **Transform

);

Parameters:

Inputs A pointer to an array of inputs (IDXSurfaces, for
example). Can be NULL.

NumInputs The size of the Inputs array. Can be zero.

Outputs A pointer to an array of outputs. Can be NULL.

NumOutputs The size of the Outputs array. Can be zero.

InitialProp A pointer to an object holding desired initial prop-
erties of the transform. Can be NULL.

ErrorLog A pointer to an IErrorLog object. Is optional, and
can be NULL.

TransformCLSID The CLSID of the transform to create.

TransformIID The interface ID of the transform.

Transform The address of a pointer to the Transform object
that will be created.

472 Hour 23

,

,

If either NumInputs or NumOutputs is equal to something other than zero,
CreateTransform() will automatically set up the transform. Conversely, you
can delay the setup until a later time by setting both NumInputs and
NumOutputs to zero.

All of these parameters might seem daunting right now. But, don’t worry because you
will see in the sample application that it is actually very easy to create and use trans-
forms.

2D Transforms
Whether or not you know it, you have probably already seen 2D transforms. 2D trans-
forms are image transforms that operate on two-dimensional surfaces. Some examples of
2D transforms are: fading from one image to another, rotating an image, and scaling an
image. As you read earlier, some of these transforms need two input images and others
only need one. For example, to rotate or scale an image, we have only one input image
(the image that hasn’t been rotated or scaled) and one output image (the scaled or rotated

32 1634xCH23 11/13/99 11:19 AM Page 472

image). On the other hand, to fade from one image to another, two input images are com-
bined to create an output image. Figure 23.1 shows an example of the 2D Wipe
Transform.

Bring Surfaces to Life with DirectX Transform 473

23

FIGURE 23.1
The 2D Wipe
Transform.

FIRST
 IMAGE

 SECOND
IMAGE

Input Image 1 Input Image 2

2D Wipe Transform

Output Image

DirectX Transform comes with a set of 2D transforms; however, it also allows you to
create your own transforms. The focus here will be on using the transforms already pro-
vided by DirectX Transform. For more information about creating your own 2D trans-
forms, a good place to start is the DirectX Transform SDK documentation.

Each transform has certain properties that tell the transform how to run. For example, the
rotate transform needs to know how much it should rotate the input image. In order to
get at and change these properties, DirectX Transform provides us with two possible
interfaces: IDXEffect or a custom interface.

Many transition-type transforms use the IDXEffect interface, which is simple, yet pow-
erful. It was written to provide a common interface to transition-type transforms (trans-
forms like the fade transform, which can be used to animate images) .

IDXEffect has a floating point progress variable (which holds a value between 0.0 and
1.0) that tells the transform the percentage of the transition that has been completed.
Using the fade transform as an example, if the progress variable were 0.0, the output
would be the first input image. If the progress variable were 1.0, the output would be the
second input image. If the progress variable were 0.5, the output would be a combination
of the two input images (half of the first and half of the second). IDXEffect defines the
following functions:

• get_Capabilities() is used to find out if a transformation is PERIODIC (the trans-
form produces the same output image when the progress variable is equal to 1.0 or
0.0) or MORPH (when the progress variable is 0.0 the output is the first input image,
and when the progress variable is 1.0 the output is the second input image).

32 1634xCH23 11/13/99 11:19 AM Page 473

• get_Duration() is used to get the amount of time recommended for performing
the transition.

• get_Progress() is used to find the progress of a transition.

• get_StepResolution() is used to find the smallest significant step size.

• put_Duration() is used to set the amount of time recommended for performing
this transition.

• put_Progress() is used to set the progress of a transition.

The IDXEffect interface is not applicable to all transforms. This is because not all trans-
forms produce transitions and because the IDXEffect interface might not unlock all the
functionality of a transform. To account for this situation, each transform can also define
a custom interface.

The BasicImage transform is an example of a 2D transform that doesn’t produce transi-
tions. The BasicImage transform is useful for performing simple image manipulation
routines on a surface. In particular, the BasicImage transform can rotate, mirror, or invert
an image. For this type of transform, the IDXEffect interface does not make sense.
Instead, BasicImage defines a custom interface that allows the user to specify exactly
what type of image manipulation she wants performed on the input surface.

At the other end of the spectrum, sometimes, IDXEffect does not provide all the func-
tionality that some transition-type transforms require. For example, there is a 2D trans-
form included with DirectX Transform that takes two input images and produces a
“wipe” transition between them (the Wipe Transform). In addition to the IDXEffect
interface, the Wipe Transform has a custom interface that allows the user to specify the
wipe direction (horizontal or vertical) and a gradient size (the portion of the transform
that blends the two images together). In the case of the Wipe Transform, you can choose
to ignore the custom interface so that the transform will run with default values; how-
ever, the custom interface is there if you want more control over the transform.

474 Hour 23

More than 40 2D transforms are included in the DirectX Media SDK. For a
complete list of 2D transform specifications (including names, CLSIDs, inter-
faces, and more), you should consult the DirectX Media SDK Documentation.

The sample application in this hour creates a transition using a 2D transform. To see spe-
cific implementation details of 2D transforms, refer to the sample application.

32 1634xCH23 11/13/99 11:19 AM Page 474

Procedural Surfaces
Procedural surfaces are surfaces that are described by a mathematical procedure or func-
tion. There are several advantages to using procedural surfaces. First, procedural surfaces
use very little space. Instead of storing pixel values in a giant two-dimensional array, the
pixel values are calculated, when needed, by a mathematical function. This might seem
trivial at first, but a closer look at the numbers reveals what a huge advantage this is.
Suppose that you have an image in your application that is 640 by 480 pixels. Assuming
that each pixel is 32 bits (4 bytes), our surface will take up 640 × 480 × 4 = 1,228,800
bytes. That’s 1.2 megabytes! It wouldn’t take many surfaces of this size before a com-
puter runs out of memory.

Procedural surfaces can also use randomness in their functions to produce unique pat-
terns every time they are used. This makes them perfect for use as organic textures like
wood or marble. In addition, procedural surfaces are often resolution independent. This
means that no matter what resolution you view the surface in, it will still appear sharp
and clear (as opposed to getting blocky and pixelated like normal surfaces).

However, procedural surfaces also have some disadvantages. As you read earlier, in a
normal DXSurface, the color values for each pixel are stored in a giant two-dimensional
array. Because each pixel’s value is already known, you can read or write the pixel value
at a particular location on the surface. However, in a procedural surface, there is no array,
so it has to use a mathematical formula to calculate the pixel value at a particular loca-
tion. This leads to an important property of procedural surfaces: they are read-only sur-
faces. That is, you can read pixel values from a procedural surface, but you can’t write
pixel values to a procedural surface.

Another disadvantage of procedural surfaces that stems from the way pixel information
is stored is that looking up pixel values on procedural surfaces is much slower than on
DXSurfaces. Looking up a pixel value on a normal DXSurface is fast because all you
have to do is look at the particular spot in the array. However, executing a mathematical
function to find a pixel value is usually slow in comparison. If the mathematical function
is complex and the surface is large, reading pixel values can bring your application to a
crawl.

In addition, it’s hard to define a mathematical function to describe every type of surface
you want. For example, it would be impossible to create a procedural surface with a pic-
ture of someone you know on it.

What do procedural surfaces look like? That depends on the mathematical function! A
gradient is a simple example of a surface that is easy to define as a procedural surface.

Bring Surfaces to Life with DirectX Transform 475

23

32 1634xCH23 11/13/99 11:19 AM Page 475

Because a gradient is just a blend of colors, its procedural surface might contain two col-
ors—the color on the left side of the surface and the color on the right side of the sur-
face. When a pixel value is read from the surface, the mathematical function finds the
average color at the point in question and returns it as the pixel value. Complex proce-
dural surfaces also exist that produce extremely realistic organic patterns such as clouds,
marble, or wood.

Two important classes are defined by DirectX Transform in order to simplify the creation
of a procedural surface. The first class, CDXBaseSurface, serves as the base class for the
actual surface object. The second class, CDXBaseARGBPtr, provides an interface to the
actual mathematical function the procedural surface will use. To create your own proce-
dural surface, you must create two things: a surface object that inherits from
CDXBaseSurface and a “surface filling” object that inherits from CDXBaseARGBPtr.

CDXBaseSurface has several virtual functions that you can choose to override; however,
you are only required to override three member functions. First, you must override the
CDXBaseSurface::CreateARGBPointer() function; this function allocates your
CDXBaseARGBPtr object. Second, you must override the CDXBaseSurface::
DeleteARGBPointer() function; this function deallocates your CDXBaseARGBPtr object.
Finally, you must override the CDXBaseSurface::SurfaceCLSID() function; this function
must return the CLSID of your procedural surface.

CDXBaseARGBPtr has only one function you are required to override, the
CDXBaseARGBPtr::FillSamples() function. This function contains the mathematical
function that describes your procedural surface. Listing 23.2 is an example of what your
procedural surface objects might look like.

LISTING 23.2 Procedural Surface Objects

1: // the surface object, which inherits from CDXBaseSurface:
2:
3: class MyProceduralSurface : public CDXBaseSurface
4: {
5: public:
6: MyProceduralSurface();
7: ~MyProceduralSurface()
8:
9: const GUID& SurfaceCLSID() { return MyProceduralSurface_CLSID; }
10:
11: HRESULT CreateARGBPointer(CDXBaseSurface *lpSurface,

CDXBaseARGBPtr **alpARGBPtr)
12: { (*alpARGBPtr) = new MyProceduralSurfaceARGBPtr(); }
13:
14: void DeleteARGBPointer(CDXBaseARGBPtr *lpARGBPtr)

476 Hour 23

32 1634xCH23 11/13/99 11:19 AM Page 476

15: { delete (MyProceduralSurfaceARGBPtr*) lpARGBPtr; }
16: };
17:
18: // the ARGBPtr object, which inherits from CDXBaseARGBPtr
19:
20: class MyProceduralSurfaceARGBPtr : public CDXBaseARGBPtr
21: {
22: public:
23: MyProceduralSurfaceARGBPtr(CDXBaseSurface *lpDXBaseSurface);
24: ~MyProceduralSurfaceARGBPtr();
25:
26: void FillSamples(const DXPtrFillInfo& lpDXFillInfo);
27: };

The DXPtrFillInfo structure is passed to the CDXBaseARGBPtr::FillSamples() func-
tion. This structure contains information about where the pixel data generated by your
mathematical function should go. Most of the work of your procedural surface takes
place in the FillSamples() function.

Procedural surfaces are a huge topic! Now that you know the basics of implementing a
procedural surface, you should try to create the actual mathematical functions used by
the procedural surface. Experiment with different functions, but start with something
simple like the gradient procedural surface that was mentioned previously.

3D Transforms
3D transforms use many of the same ideas that 2D transforms use. In fact, many of the
transition-type 3D transforms use the same DXEffect object to control the transition that
the 2D transforms use. In general, 2D transforms receive images as input and perform
functions on the pixels representing the images to produce an output image. 3D trans-
forms are different because they take a 3D mesh as input and perform functions on the
geometry representing the 3D object to produce a new 3D mesh. 3D transforms can also
modify the textures applied to a 3D object.

It is important to use consistent conventions when you are working with 3D transforms.
The geometry convention for all 3D transforms is the right-handed convention. The right-
handed convention states that the positive z-axis points towards the user, the front side of
a face is determined by moving around the vertices counterclockwise, and the positive
angle of rotation around an axis is determined using the right-hand rule. To use the right-
hand rule, make a hitchhiker’s fist and simply point your right thumb along the direction
of the positive axis in question; your fingers will curl in the direction of a positive angle.

As mentioned previously, most of the 3D transforms included in DirectX Transform
take a single mesh as an input and create a single mesh as an output. In particular, 3D

Bring Surfaces to Life with DirectX Transform 477

23

32 1634xCH23 11/13/99 11:19 AM Page 477

transforms use meshes of type Direct3DRMMeshBuilder3. In most cases, we simply want
to load a 3D object saved in the X file format. When you have created the IDirect3DRM3
object, you can create a Direct3DRMMeshBuilder3 by calling CreateMeshBuilder().
After that, you can load an X file using the Direct3DRMMeshBuilder3::Load() function.
Listing 23.3 shows an example of how it all fits together.

LISTING 23.3 Loading an X File for Use in 3D Transforms

1: BOOL LoadMesh(LPCTSTR FileName)
2: {
3: /***************************
4: lpInputD3DMeshBuilder == IDirect3DRMMeshBuidler3
5: lpD3DRetainedMode3 == IDirect3DRM3
6: ***************************/
7:
8: HRESULT hres;
9:
10: // create the mesh builder
11:
12: hres = lpD3DRetainedMode3->CreateMeshBuilder(&lpInputD3DMeshBuilder);
13:
14: if (hres != D3D_OK) return FALSE;
15:
16: // load an X file
17:
18: hres = lpD3DMeshBuilder->Load((void*)FileName,
19: NULL,
20: D3DRMLOAD_FROMFILE,
21: NULL,
22: NULL);
23:
24: if (hres != D3D_OK) return FALSE;
25:
26: return TRUE;
27: }

3D transforms use all the same methods 2D transforms use. Almost all the 3D transforms
included with DirectX Transform take advantage of the IDXEffect interface. This makes
the job of creating transitions very easy. When you have loaded a mesh and created the
transform, you simply update the progress variable in IDXEffect and render the output
object to the viewport. Listing 23.4 shows an example of what that code might look like.

478 Hour 23

32 1634xCH23 11/13/99 11:19 AM Page 478

LISTING 23.4 A Sample Transition in 3D

1: // load a mesh into InputD3DMeshBuilder
2: LoadMesh(“MyFile.x”);
3:
4: // create the 3D explosion transform
5: g_pTransFact->CreateTransform(NULL,
6: 0,
7: NULL,
8: 0,
9: NULL,
10: NULL,
11: CLSID_Explode,
12: IID_IDXTransform,
13: (void**)&My3DTransform);
14:
15: My3DTransform->QueryInterface(IID_IDXEffect,
16: (void**)&lpDXEffect);
17:
18: g_d3drm3->CreateMeshBuilder(&lpOutputD3DMeshBuilder);
19:
20: lpD3DRMFrame3->AddVisual(lpOutputD3DMeshBuilder);
21:
22: // setup the 3D transform
23: My3DTransform->Setup((IUnknown*)lpInputD3DMeshBuilder,
24: 1,
25: (IUnknown*)lpOutputD3DMeshBuilder,
26: 1,
27: 0);
28:
29: float progress = 0.0f;
30:
31: while (progress < 1.0f)
32: {
33: // set the new progress
34: lpDXEffect->put_Progress(progress);
35:
36: // execute the transform
37: My3DTransform->Execute(NULL, NULL, NULL);
38:
39: // clear the screen and render
40: lpD3DRMViewport2->Clear(D3DRMCLEAR_ALL);
41: lpD3DRMViewport2->Render(lpD3DRMFrame3);
42: lpD3DRMViewport2->Update();
43: progress += 0.01f;
44: }

Bring Surfaces to Life with DirectX Transform 479

23

32 1634xCH23 11/13/99 11:19 AM Page 479

Just a reminder: This short code snippet doesn’t fill in all the blanks! You will have to
use your knowledge of Direct3D to initialize the Direct3D objects. However, it is nice to
see that the actual concepts behind creating a transform and creating a transition are
almost the same for both 2D and 3D.

A Sample DirectX Transform Application
The sample application shows off how easy DirectX Transform is to use. The application
lets us load two different images (of any supported type) and then it runs the 2D Wipe
transition on the two input images.

The sample application is split into several files, but don’t let that alarm you. Each file
was kept relatively small in order to make it easier for you to change and play with the
code. Just changing a few lines will allow you to change the transition and it should be
fairly easy to use the DirectX Transform specific files in a Direct3D application.

Here is a description of what each source file contains:

• Hour23.cpp contains the WinMain() function, a message handler, a cleanup func-
tion, and a bunch of global variables.

• Init.cpp contains two functions. The first function initializes the window, and the
second function initializes the DirectDraw objects.

• InitDTrans.cpp also contains two functions. The first initializes the DirectX
Transform objects. The second function sets up the transform.

• LoadImage.cpp contains a single function that prompts the user to select a file to
be loaded into a DXSurface object.

• TransformImages.cpp holds the code that performs the transition.

Some of the source code should look familiar because it’s from previous hours. However,
the application has four essentially new parts. The application creates DXSurface objects,
loads images into DXSurface objects, creates a 2D transform, and animates the 2D trans-
form.

Create DXSurface Objects
A hierarchy of objects must be created before you can actually create DXSurface objects.
You need a DXTransformFactory to create a DXSurfaceFactory; when you have a
DXSurfaceFactory, you can call DXSurfaceFactory::CreateSurface() to create a new
DXSurface.

480 Hour 23

32 1634xCH23 11/13/99 11:20 AM Page 480

In the sample app, the CreateSurface() function is used to create two different surfaces.
First, it is used to create an output surface (the surface that the transform draws its output
to) and then it is used to create the primary DirectDraw surface. The primary
DirectDraw surface is the surface that you actually see on your monitor.

Listing 23.5 shows how the CreateSurface() function is used in the sample application.

LISTING 23.5 Creating a DXSurface

1: // create a new surface with the factory (our output surface)
2: hres = lpSurfaceFactory->CreateSurface(NULL, // pointer to DDraw
3: NULL, // surface description
4: &DDPF_PMARGB32, // pixel format ID
5: &ImageBounds, // bounds
6: 0, // flags
7: NULL, // pointer for aggregation
8: IID_IDXSurface, // REFIID
9: (void**)&lpOutputSurface); // our new surface

Load the Images
One of the true conveniences of using DXSurfaces is the freedom from worrying about
image file formats. To load an image, simply call the IDXSurfaceFactory::LoadImage()
function.

In the application, the hardest part is making sure that the file name we pass is a Unicode
string. Listing 23.6 shows how the application uses LoadImage().

LISTING 23.6 Loading an Image with LoadImage()

1: // Convert FileName to a unicode string...
2: mbstowcs(WFileName, FileName, 256);
3:
4: // create a new surface with the factory (our output surface)
5: hres = lpSurfaceFactory->LoadImage(WFileName, // File Name (LPWSTR)
6: NULL,
7: NULL,
8: NULL,
9: IID_IDXSurface, // REFIID
10: (void**)surface); // Surface

Bring Surfaces to Life with DirectX Transform 481

23

32 1634xCH23 11/13/99 11:20 AM Page 481

Create the Transform
When the transform factory has been created, you can create the DXTransform object by
calling IDXTransformFactory::CreateTransform(). In the sample application, we cre-
ate the 2D Wipe Transform. If you wanted to change the transform, all you would have
to do is change the CLSID you pass to CreateTransform() (assuming that the transform
has the same number of inputs, outputs, and uses the DXEffect interface). Listing 23.7
shows the code the sample application uses to create its transform.

LISTING 23.7 Creating the Transform

1: // create our transform
2: hres = lpTransformFactory->CreateTransform(
3: NULL, // inputs
4: 0, // num inputs
5: NULL, // outputs
6: 0, // num outputs
7: NULL, // property flag
8: NULL, // error log
9: CLSID_DXTWipe, // CLSID of Effect
10: IID_IDXTransform, // Transform ID
11: (void**)&lpTransform); // Pointer to our Transform
12:
13: if (hres != S_OK)
14: {
15: ErrStr = Err_CreateTransform;
16: return FALSE;
17: }

Animate the Image Transforms
Before you display the transition, you have to set up your transform. If you entered
inputs and outputs in the CreateTransform() call, your transform is already set up.
However, if you didn’t enter inputs and outputs in the CreatTransform() call, you must
call IDXTransform::Setup(). Listing 23.8 shows how the sample application uses the
Setup() function.

LISTING 23.8 Setting Up the Transform

1: BOOL SetupTransform()
2: {
3: HRESULT hres;
4: IUnknown* in[2];
5: IUnknown* out[1];
6:

482 Hour 23

32 1634xCH23 11/13/99 11:20 AM Page 482

7: in[0] = lpSurfaceA;
8: in[1] = lpSurfaceB;
9:
10: out[0] = lpOutputSurface;
11:
12: // setup our transform: 2 inputs, 1 output
13: hres = lpTransform->Setup(in, 2, out, 1, 0);
14:
15: if (hres != S_OK)
16: {
17: ErrStr = Err_TransformSetup;
18: return FALSE;
19: }
20:
21: return TRUE;
22: }

Now that the transform has been set up, you are finally ready to display the animated
transition. Each time you want to draw the next step of the transition, you have to change
the progress variable in the DXEffect object. After that, you must call
IDXTransform::Execute() to update the output surface. Listing 23.9 shows how it all
fits together.

LISTING 23.9 Executing the Transform

1: DXVEC TransformPlacement = { DXBT_DISCRETE, 0 };
2:
3: // set new progress before we execute (so a change will take place)
4: lpDXEffect->put_Progress(progress);
5:
6: // execute with the new progress
7: hres = lpTransform->Execute(NULL, // Request ID (GUID)
8: NULL, // Bounds (DXBNDS)
9: &TransformPlacement); // Placement (DXVEC)

Cleanup
When releasing the DirectX Transform objects, it is important to remember the order in
which you created them. It is safest to release objects in the opposite order that you cre-
ated them. Listing 23.10 shows the Cleanup() function used in the sample application.

Bring Surfaces to Life with DirectX Transform 483

23

32 1634xCH23 11/13/99 11:20 AM Page 483

LISTING 23.10 Cleanup()

1: //---- Cleanup - Cleanup objects, post error message ----//
2: void Cleanup()
3: {
4: // release transform factory interfaces
5: SafeRelease(lpSurfaceA);
6: SafeRelease(lpSurfaceB);
7: SafeRelease(lpDDSPrimary);
8: SafeRelease(lpOutputSurface);
9: SafeRelease(lpSurfaceFactory);
10: SafeRelease(lpTransform);
11: SafeRelease(lpTransformFactory);
12:
13: // release DirectDraw interfaces
14: SafeRelease(lpDD);
15:
16: // uninitialize com
17: CoUninitialize();
18:
19: // display error if one thrown
20: if (ErrStr)
21: {
22: MessageBox(NULL, ErrStr, szCaption, MB_OK);
23: ErrStr=NULL;
24: }
25: }

Summary
DirectX Transform is a powerful, easy way to get great special effects in your applica-
tion. In this hour, you learned about procedural surfaces, 2D and 3D transforms, and the
interfaces and objects that are inside of DirectX Transform. You also created your first
DirectX Transform application. This is a great starting point for further experimentation.

Q&A
Q Where can I find more information about procedural surfaces, how to create a

PhotoShop plug-in, or how to use DirectX Transform on a Web page?

A The Internet is always a great place to start your research. Use your favorite search
engine or visit your favorite programming-related Web pages. Also, the DirectX
Media SDK Documentation is an excellent place to look for more information
about all of the above.

484 Hour 23

32 1634xCH23 11/13/99 11:20 AM Page 484

Q Can I chain the output of one 2D transform to the input of another?

A Absolutely! You might be able to create some very interesting transforms this way.
However, depending on the transforms, at some point you will reach a limit where
the CPU can’t handle any more and your application will slow to a crawl.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. What is the difference between the PMARGB32 and ARGB32 pixel formats?

2. What kind of objects do 2D transforms operate on?

3. What kind of objects do 3D transforms operate on?

4. Why is reading pixels from a procedural surface usually slower than reading pixels
from a normal surface?

5. Why are procedural surfaces smaller than normal surfaces?

6. What function must you call before you create your DXTransformFactory object?

7. What type of string (ANSI or Unicode) does the
DXTransformFactory::LoadImage() function take?

8. In what order should you release DirectX Transform objects?

9. What type of transform is most likely to take advantage of the DXEffect interface?

10. What does the progress variable in the DXEffect object stand for?

Exercises
1. Change the 2D transform used in the sample application so it uses the 2D Fade

transform (note, the CLSID for the Fade transform is CLSID_DXFade).

2. After you have changed the 2D transform to the Fade transform, try specifying the
pixel format of the images you load. See if performance differs when you specify
PMARGB32 or ARGB32.

Bring Surfaces to Life with DirectX Transform 485

23

32 1634xCH23 11/13/99 11:20 AM Page 485

32 1634xCH23 11/13/99 11:20 AM Page 486

HOUR 24
Integrating Media Into
Web Pages and
Applications with
DirectAnimation

by Brian Noyes

The final part of the DirectX Media SDK that we will cover is Direct-
Animation. DirectAnimation is a powerful part of the DirectX Media
libraries that ties together many of the capabilities you have seen so far in
this book and allows you to access them from a high level of abstraction
using interfaces that can be accessed in a variety of languages and ways.

DirectAnimation allows you to integrate many different media types to cre-
ate complex animations that can be used as Web content, as a media element
of an application, or as a standalone application in its own right. In addition

33 1634xCH24 11/13/99 11:14 AM Page 487

to being extremely powerful and flexible, DirectAnimation is easy to use because it takes
care of most of the gory details of setting up an animation and integrating various types
of media for you. It allows you to interact with the DirectAnimation interfaces in your
code from a much higher level of abstraction, allowing you to focus on the model or
behavior you are trying to represent, instead of the lower-level details of how to represent
that behavior.

In this hour, you will learn

• About the capabilities of DirectAnimation

• What interfaces and components make up DirectAnimation

• How to access DirectAnimation capabilities from different programming environ-
ments

• How to code a DirectAnimation scene from C++

• How to code a DirectAnimation scene from scripting languages for the Web

DirectAnimation—One API, Many Uses
DirectAnimation is an extremely versatile and capable part of the DirectX libraries. It
basically rolls up most of the major capabilities of the underlying DirectX foundation
classes into a single set of interfaces that lets you quickly integrate a variety of media
types and access and program those interfaces from a number of different languages and
development environments. Using DirectAnimation, you can integrate 2D images, 3D
geometrics, audio, video, vector graphics, and text into your Web pages or applications
using an amazingly small amount of code. DirectAnimation presents itself as a set of
ActiveX controls available on your system that you interact with programmatically
through interfaces on those controls, just like any other COM component.

You can use DirectAnimation from a variety of languages and development environ-
ments, ranging from C++, to Web page scripts, and HTML code. What this means is that
not only can you use DirectAnimation to code animations and integrate media into a
stand-alone application, but you can also harness the power of DirectAnimation directly
from a Web page to create anything ranging from a simple animated element (for exam-
ple, a spinning 3-D logo), to a portal into a virtual world. DirectAnimation also includes
several run-time controls that you can embed on a Web page and simply set properties on
to create animations without even using script. If you are coding from C++, you can use
DirectAnimation to manage the entire scene of your application or simply to create an
animated element of your application, such as a cockpit gauge, a video screen, or a
sound track.

488 Hour 24

33 1634xCH24 11/13/99 11:14 AM Page 488

If DirectAnimation is capable of all this, you might be wondering why you would ever
use the other parts of the DirectX foundation to code things at a lower level. There are
two simple answers to that question: performance and control. By working at a higher
level of abstraction, you make some sacrifices in managing the performance and priori-
ties of your application because you are handing most of that control over to Direct-
Animation itself. Because the primary design consideration for games and simulations is
usually performance, you might not be willing to trade an ounce of performance for
some additional ease of coding. Also, as mentioned before, DirectAnimation rolls up
most of the capabilities of the underlying libraries, but not all. And some of those excep-
tions happen to be the most powerful and complex capabilities of the individual DirectX
classes, which are often the ones you need to use to distinguish your application from a
competitor’s product. This is just another design decision you will have to face—maxi-
mizing performance and capability versus time to market. That extra time you save using
DirectAnimation for low-bandwidth parts of your application could be worth it in terms
of quicker market presence and cost of development.

So now you should have a high-level understanding of what DirectAnimation is capable
of, and how you can access that capability. It is probably still a little fuzzy to you on how
this all comes together in code to create the next great game or an award-winning Web
site, but we will get there. First, we need to dive a little deeper into the DirectAnimation
controls and interfaces to understand how you program DirectAnimation and use it to
pull discrete media elements together into a purposeful scene or element of your applica-
tion or Web page.

Scratching the Surface—A Look at the
Interfaces

Like other parts of the DirectX libraries, DirectAnimation exposes itself to the program-
mer as a set of interfaces. Most of the interfaces you will deal with come from one of
two main components: the DirectAnimation control or the DirectAnimation Windowed
control. The main difference between the two is the way they are presented as an
ActiveX control by a host application. The DirectAnimation control is a “windowless”
control in ActiveX terminology. Some host applications do not support windowless con-
trols, so the Windowed control is just a different version for those types of containers.
There are only minor differences from the programmer’s perspective. You can also use
the DirectAnimation control by creating an instance of the IDAView interface and use the
control through that interface and DirectDraw to do the painting of the scene to the
screen. We will use the DirectAnimation control in our example, but a sample application
is also included that follows the mold of the other examples in this book by using the
IDAView interface and a DirectDraw surface.

Integrating Media Into Web Pages and Applications with DirectAnimation 489

24

33 1634xCH24 11/13/99 11:14 AM Page 489

Because DirectAnimation includes so many of the capabilities of the rest of DirectX, but
you interact with those capabilities slightly differently in DirectAnimation, we will only
be able to scratch the surface of DirectAnimation’s diversity in this hour. But we will
cover the overall architecture of DirectAnimation and show you some of the basics of
programming with DirectAnimation. From there, you should be able to dig deeper on
your own, using the examples and documentation in the SDK to learn more.

490 Hour 24

There is an incompatibility between the DirectX SDK Debug libraries and
DirectAnimation. If you selected the Debug version of the DirectX libraries
when you installed the DirectX SDK, many features of DirectAnimation will
not work properly. To fix the problem, you will need to re-run the DirectX
SDK setup and select the Retail version of the libraries when prompted.

DirectAnimation Architecture
The DirectAnimation architecture is shown in a conceptual format in Figure 24.1. The
DirectAnimation control basically derives its capabilities from the rest of the DirectX
classes or the Windows operating system (when it uses the GDI for drawing instead of a
DirectDraw surface). The DirectAnimation control presents the graphical interface of the
animation through either the IDAView or IDAViewerControl interface. You can choose to
use the IDAViewerControl (or IDAViewerControlWindowed for the windowed version) to
create and manipulate the control if you are willing to let it use the GDI to do the draw-
ing and if your application supports hosting an ActiveX control. The IDAViewerControl
interface takes care of the drawing calls for you. Or you can use the IDAView interface
and pass a DirectDraw surface to it and manage the updating of the screen yourself.

FIGURE 24.1
DirectAnimation
architecture.

Structured Graphics
Control

Sprite Control Path Control Sequencer Control

Windows ServicesDirectX classes DirectX Media classes

DirectAnimation Control

Behavior interfaces

DAStatics interface

DAViewerControl interface DAView interface

33 1634xCH24 11/13/99 11:14 AM Page 490

The basic element of animation in DirectAnimation is a behavior. These behaviors are
created from interfaces derived from the IDABehavior interface. Behavior classes are
defined for all the different types of media that you can integrate in your application, as
well as behaviors for data types, events, transformations, and styles.

The IDAStatics interface is a central element of the DirectAnimation API. It has a huge
number of methods and properties defined that you can use to create and manipulate
behaviors in the DirectAnimation model.

A large number of interfaces are available from DirectAnimation that present the func-
tionality of all the different types of behaviors that can be created. The numbering
scheme that DirectAnimation uses on these interfaces is to put the version number of the
interface immediately following the IDA part of the interface name (for example,
IDA2Statics). Note that there are also a number of interfaces with a 2 or 3 in their name
following the basic name of the interface (for example, IDAPoint3). These interfaces rep-
resent two or three dimensional versions of a type of object. The last thing to realize is
that Microsoft ships the DirectAnimation library as an integral part of Internet Explorer
and has included a newer version of danim.dll with Internet Explorer 5 that includes sev-
eral new interfaces or newer versions of existing interfaces. So the documentation for the
DirectX Media SDK might list fewer versions of some interfaces than actually exist on
your system.

The DirectAnimation Model
The DirectAnimation programming model centers around the creation and manipulation
of behavior objects. To get started, you have to create a DirectAnimation Control and
obtain an IDAViewerControl (or IDAView) interface for that control. You can then obtain
an IDAStatics interface for that control, which will allow you to start creating behavior
objects from the DirectAnimation control. After you have done this initialization, most of
DirectAnimation programming is all about behaviors and the interfaces to those behav-
iors.

Behavior objects can be constructed from other behavior objects, resulting in hierarchies
of behaviors that can be used to represent complex real-world objects in very few lines of
code. Because there are behaviors for simple data types, such as DANumber objects, you
can use these behaviors to represent time varying characteristics of objects as well, and
modify those root behaviors at runtime. After you have built up the hierarchy of behav-
iors that represent some element in your animation, the DirectAnimation model will
propagate a change to the underlying behavior through the rest of the dependent behav-
iors without any further action required on your part.

Integrating Media Into Web Pages and Applications with DirectAnimation 491

24

33 1634xCH24 11/13/99 11:14 AM Page 491

This requires a little different mentality when constructing a model for your application.
You have to think ahead and outline the hierarchical dependencies between behaviors so
that changes to a root or underlying behavior has the expected result at the higher levels.
When you have laid out the interrelationships, you construct the behaviors based on
those relationships, start the model running, and let DirectAnimation do the rest. This top
down approach takes a little getting used to because other parts of DirectX require you to
think from the bottom up.

For example, an aircraft could be constructed of a fuselage behavior and a propeller
behavior. The propeller behavior can be constructed with a rotation behavior based on a
DANumber behavior that is linked to a throttle control in your game and the 3D object
that provides the visual representation. The composite propeller and fuselage behavior
can have a translation behavior applied to it representing the movement through the air.
That translation behavior can be based on a calculation combining several DANumbers
representing airspeed, propeller rotation speed, drag, and so on. You code all these
dependencies, and then the only thing you actually modify at runtime is the DANumber
representing the throttle setting, and DirectAnimation will do all the calculations to fig-
ure out how to modify the containing behaviors, based on the dependencies you describe
in code at design time.

Behaviors can also be reactive and interactive. There are event behaviors that can be
setup to change other behaviors when the event occurs. Also, events can be defined based
on user input, so this provides an interactive element to the behaviors. Each type of
behavior will have a number of methods defined on its interface that allows you to per-
form operations relevant to that behavior type. There are also a number of inherited
methods from the IDABehavior interface that will apply to all behaviors. Some methods,
such as Transform() are pretty much common to all behaviors, but because the seman-
tics of the transformation is different depending on the type of the behavior, these are
individually defined, but have similar signatures.

So basically, the DirectAnimation model is really all about defining behaviors and the
relationships between them. After this is done, you start the DirectAnimation control run-
ning, and it does the rest. You can still modify the behaviors after it is running by initial-
izing behaviors using the ModifiableBehavior() method of the IDAStatics interface and
then using the SwitchTo() method on those behaviors somewhere else in your code (that
is, a menu or command handler).

A Versatile Programming Environment
Because the DirectAnimation interfaces include most of their capability through automa-
tion compatible interfaces, these interfaces can be accessed and manipulated from any
language that supports COM or automation interface programming. You can access the

492 Hour 24

33 1634xCH24 11/13/99 11:14 AM Page 492

full capabilities of DirectAnimation through normal COM interfaces or automation inter-
faces through Visual C++, Visual Basic, and Java. But the automation compatible inter-
faces can also be accessed from scripting languages and other environments that do not
support the manipulation of COM interface pointers directly. The most common scripting
languages that support this type of interaction are HTML embedded JScript and
VBScript.

If you choose to use DirectAnimation from C++, the possibilities open up even more.
You can use DirectAnimation to create a standalone application where the Direct-
Animation scene takes up the entire window area, or you could simply use Direct-
Animation to create media elements that are embedded in your application, either as
ActiveX controls or simply programmatic elements of the main application (that is, child
windows of the main window). You can also embed DirectAnimation inside other
ActiveX controls that you create from Visual C++ and distribute those controls either as
elements of an application, as third-party controls, or as Web content ActiveX controls.
This also enables you to protect your source code from distribution in the Web environ-
ment. If you code your animation in script, anyone is able to copy or modify your code.

Another advantage to using DirectAnimation from C++ is that some interfaces included
in DirectAnimation are not accessible from automation environments, and these addi-
tional interfaces can make a significant difference in performance and capability. Most
notably, by programming DirectAnimation from C++, you can create a DirectDraw sur-
face yourself as shown in earlier parts of this book, pass that surface to the Direct-
Animation model, and then control the updating of the surface yourself. By doing this,
you can greatly improve performance because the normal DirectAnimation control just
uses the GDI to draw to the screen. It gives you better control of the update frequency,
and you can have better control of how you react to events and provide hooks into the
behaviors that compose a DirectAnimation scene.

Because of the automation and type library support provided by DirectAnimation, there
are multiple ways to access the functionality within more powerful languages like Visual
C++. Because there are so many variants and we are trying to keep this lesson down to
an hour, we will only dive into the shallow end of two of the choices: C++ and scripts.

DirectAnimation Programming in C++
When programming DirectAnimationfrom Visual C++, you have a lot of choices on how
you can access and use the capabilities of the library. You can stick to straight C++ COM
interface programming, as is required for most other DirectX libraries, or you can take
advantage of the type library and automation support and use some of the features of
Visual C++ to make your life a little easier. Because of the way you program with

Integrating Media Into Web Pages and Applications with DirectAnimation 493

24

33 1634xCH24 11/13/99 11:14 AM Page 493

DirectAnimation, getting a little help with all the COM interface management becomes
much more important than it is for DirectDraw. DirectDraw has a lot of helper functions
defined that hide most of the COM details from you. DirectAnimation does not include
similar helper functions, but the code can still be very straightforward and easy to code
and understand with a little help from the Visual C++ environment.

The thing about DirectAnimation that causes straight C++ COM programming to get a
little painful is that you will be creating and manipulating a ton of interfaces. This makes
keeping track of all the reference counting and HRESULT error checking extremely
tedious and error prone. That is where wrapper classes come in. You have a number of
choices in the Visual C++ environment that can help you out with the interface manage-
ment. You can use the ActiveX Template Library (ATL) classes: the Components and
Controls library to create wrapper classes, or the #import directive to generate smart
pointer classes from a type library.

In the sample C++ code we will be covering in detail, we will be using the #import
mechanism. We won’t go into a great deal of explanation on this, but you will see that it
is pretty straightforward to use, and significantly simplifies the code. This will let us
focus more on what is going on with DirectAnimation, instead of what is going on with
COM.

Using Scripts to Use DirectAnimation on the Web
You can also use scripts in HTML to program DirectAnimation capabilities directly into
a Web page. In fact, this is the primary thrust of the DirectAnimation documentation and
samples. The process is essentially the same as in C++. You create a DirectAnimation
control, get an IDAStatics interface from it, create behaviors and set the model running.
The main difference is in the syntax, but the code actually turns out to be very similar to
the code you use with the #import mechanism in Visual C++.

Sample DirectAnimation Application in C++
Enough with the theory and abstractions: let’s work with some code to show just how
powerful and easy DirectAnimation really is. We will put together a simple C++ applica-
tion containing an animated scene, complete with 3D objects, 2D images, lights, camera,
and sound.

We will be taking two departures from previous examples. First, we will be using the
#import mechanism to simplify our COM interface handling with DirectAnimation.
Second, we will use an MFC AppWizard generated application as our starting point for
the code. You don’t really need to know or care about MFC to understand this example,

494 Hour 24

33 1634xCH24 11/13/99 11:14 AM Page 494

but by going that route, we can use the DirectAnimation control easily and not have to
code a bunch of Windows and DirectDraw initialization code.

To get started, you will need to run Visual C++ and select New from the File menu.
Select the Projects tab, and select MFC AppWizard (exe) from the program options.
Enter a location for the project, and enter a project name of DASample, and click OK as
shown in Figure 24.2.

Integrating Media Into Web Pages and Applications with DirectAnimation 495

24

FIGURE 24.2
Creating the
DASample project.

In the dialog that follows, select Single Document and press the Finish button. This
accepts the rest of the defaults for an MFC SDI application. We will only be making our
modifications to the CDASampleView class generated by the AppWizard to avoid getting
into much MFC. Some other code will be generated by the wizard for print preview, help
support, and other things, but we will just ignore that code.

The reason for going this route is that the MFC CWnd class supports hosting of ActiveX
controls with very little code. By using an MFC AppWizard project, everything is
already in place to allow us to use this class. We will be embedding a DAViewerControl
in the CDASampleView class using this capability. That will allow us to focus just on the
DirectAnimation code.

Initializing DirectAnimation
There are basically two ways to get DirectAnimation initialized. Which way you choose
depends on whether you are going to let the DirectAnimation control do all the drawing
on its own using the GDI, or whether you want to pass it a DirectDraw surface and con-
trol updating the screen yourself.

The first route is by far the easiest, and it is the one we will use in our sample applica-
tion. The main drawback to this approach again is performance—because the control is

33 1634xCH24 11/13/99 11:14 AM Page 495

using the GDI for drawing the scene, you miss out on all the performance benefits
DirectDraw provides you. We will describe the process required to use DirectDraw at the
end so that you know how to go further on your own, and a separate example project is
included that uses raw COM interfaces and the DirectDraw/DAView approach to show
you how.

We must add a couple of other things before we get down to the DirectAnimation code
so that we have somewhere to put that code. We will add a handler to the CDASampleView
class for the Windows WM_CREATE message and will put all our DirectAnimation initial-
ization code there to insulate you from the MFC architecture as much as possible in this
example. To add this handler from Visual Studio, you can simply right-click the
CDASampleView class in the ClassView pane, and select Add Windows Message Handler
as shown in Figure 24.3. Select the WM_CREATE message from the list in the resulting dia-
log box, and press the Add and Edit button. This plops you into the handler function with
the focus on the line where you should start adding your code.

496 Hour 24

FIGURE 24.3
Adding the Windows
message handler.

We’ll come back to this handler in a moment, but there are a few other initialization
steps to take first. We are going to want a child window to host the DirectAnimation con-
trol that won’t go out of scope when the WM_CREATE handler finishes. To do this, just add
a CWnd member to the CDASampleView class with the code in Listing 24.1 as a public
member of the class.

33 1634xCH24 11/13/99 11:14 AM Page 496

LISTING 24.1 CWnd Member Variable in DASampleView.h

1: public:
2: CWnd m_ctl;

We also need to add the DirectAnimation library to our application. If we were going to
code straight C++ COM code, we would #include the danim.h file and add the
daguid.lib static link libraries to the project link settings. But because we are going to
use the #import directive, all we do is add Listing 24.2 to the top of our
DASampleView.h file.

LISTING 24.2 #import Declaration in DASampleView.h

1: #pragma warning(disable: 4192)
2: #import <danim.dll> rename_namespace(“DAnim”)
3: using namespace DAnim;

The #pragma just avoids a bunch of warnings about redefinition exclusions that you don’t
need to worry about. The #import statement allows the compiler to pull in the type
library information out of the danim.dll file and automatically generates smart pointer
wrapper classes for the DirectAnimation interfaces for you. The namespace parts just let
you use the generated classes and definitions without having to qualify each one with a
namespace. After you have added this, you basically have full access to the
DirectAnimation interfaces through smart pointer wrapper classes. When you have
added this and compile your project, the compiler will generate two files in your output
directory: danim.tlh and danim.tli. These files contain the header and implementation
code for the classes the compiler finds in the danim.dll type library. You can browse
through these files to see the classes generated if desired.

Integrating Media Into Web Pages and Applications with DirectAnimation 497

24

Sometimes the Visual C++ compiler gets ahead of itself while generating the
.tlh and .tli files and starts trying to compile using those files before it has
fully closed them. This results in a compile error saying fatal error C1083:
Cannot open include file. All you have to do is try to compile again, and
it usually succeeds the second time.

The CWnd::CreateControl() Function
To initialize the DAViewerControl, we will let MFC do a lot of work for us by using the
CWnd::CreateControl() function. This function creates an ActiveX control from a
CLSID or a ProgID string, and automatically makes the numerous connections required
between an ActiveX control and its host container.

SY
N

TA
X

,

33 1634xCH24 11/13/99 11:14 AM Page 497

BOOL CWnd::CreateControl(REFCLSID clsid, LPCTSTR lpszWindowName,
DWORD dwStyle, const RECT& rect, CWnd* pParentWnd,
UINT nID, CFile* pPersist = NULL,
BOOL bStorage = FALSE, BSTR bstrLicKey = NULL);

This function returns TRUE on success.

Parameters:

clsid A reference to a CLSID constant for the con-
trol you are creating. An overloaded form of
this function takes a ProgID string to identify
the desired class.

lpszWindowName A string indicating the desired name for the
new window that will be created for the con-
trol. This value can be NULL if the control
will not be referenced elsewhere by name.

dwStyle A style flag indicating how to display the
control. WS_VISIBLE is the most likely value
here.

rect A rectangle defining the extents of the con-
trol that will be created.

pParentWnd A CWnd pointer to the parent window that
will host the control. This must not be NULL.

nID A control ID number that can be used to
identify or retrieve the control from its
parent.

The rest of the parameters can typically be excluded, allowing their default values to be
used.

Listing 24.3 shows the initialization of the DAViewerControl and how to obtain an
IDAViewerControl interface pointer from it.

LISTING 24.3 DAViewerControl Initialization

1: RECT rect={0,0,400,300};
2: m_ctl.CreateControl(__uuidof(DAViewerControl),NULL,

➥ WS_VISIBLE, rect,this,101);
3: IDAViewerControlPtr pVC = m_ctl.GetControlUnknown();
4: IDAStaticsPtr pS = pVC->MeterLibrary;

498 Hour 24

,

,

33 1634xCH24 11/13/99 11:14 AM Page 498

The CWnd::CreateControl() function takes several arguments. We pass it the CLSID of
the DAViewerControl by using the __uuidof() function on the DAViewerControl identi-
fier. This identifier will be created by the compiler as part of the #import operation in
the danim.tlh file. We leave the window name NULL, make the window visible, give it a
desired rectangle in client coordinates, a CWnd pointer to the parent window, and a con-
trol ID. You have to initialize the control to a specific rectangle, but you can later resize
the control just like any window in response to the WM_SIZE message.

The next line of code is the first one that uses the smart pointer classes, so we will
explain how this works briefly. You declare a smart pointer class for a given interface by
simply appending ptr to the end of the interface name. The smart pointer class is derived
from the _com_ptr_t class, and is declared in the .tlh file generated by the compiler from
the #import statement. It handles all reference counting on the interface for you, so you
don’t have to worry about calls to AddRef() and Release(). When the pointer goes out
of scope, it will call Release() itself. It has operators defined so that you just use pointer
syntax as if it were a pointer of the desired interface type itself. It also has other opera-
tors defined to ease your coding, such as the “=” operator. This operator will perform a
QueryInterface() call for you for the desired interface type. Finally, the last thing they
do is allow interface calls to pass a return type other than HRESULT, so the coding style is
more natural than always having to pass the return value as a pointer argument to the
interface method. This also allows you to reassign the result of a method back to an
object that is used to call the method, as you will see later. This saves having to declare a
bunch of extra temporary objects. If an error occurs in an interface method call, the smart
pointer class throws an exception of type _com_error, so you should wrap all your code
in try/catch blocks to protect it.

So what the third line of code in Listing 24.3 does is assign an IDAViewerControl inter-
face pointer to the pVC object. It does this by calling the CWnd::GetControlUnknown()
function to get an IUnknown pointer for the control we just created, and then performs
an implicit QueryInterface() for IDAViewerControl on that interface.

The last line retrieves an IDAStatics interface pointer from the DAViewerControl using
its MeterLibrary property. We could have created the interface directly from COM, but
the MeterLibrary property both sets the coordinate system and gets us the interface we
need next, so it saves a little code.

Two coordinate unit systems are available in DirectAnimation—pixels and meters.
Meters are the most straightforward to use because they are display-resolution indepen-
dent and because even when you specify that you want to use the PixelLibrary, pixel
units will only be used when constructing objects. When you make transformations on
those objects, meter-based space will still be used. However, there is also an

Integrating Media Into Web Pages and Applications with DirectAnimation 499

24

33 1634xCH24 11/13/99 11:14 AM Page 499

IDAStatics::Pixel property that allows you to determine quickly how many meters per
pixel there are at the current display resolution, and you can use that to perform calcula-
tions for your animation.

The origin of the coordinate system is at the center of the DAViewerControl. Even when
working in meter space, images will be imported at their natural size based on display
resolution and their pixel dimensions. You can apply scaling to them using transforma-
tions as discussed later in the “Adding Some Motion” section.

You see here that the smart pointer class also allows you to set and retrieve properties
from an interface as if they were member variables of the class. To access properties
through a normal COM interface, you have to use get_XXX() and put_XXX() methods,
where XXX is the property you are trying to access.

So after only a few lines of code and a lot of explanation, we have an initialized
DirectAnimation control as a child window of our view window, and we have an
IDAViewerControl pointer to that control. We also have an IDAStatics interface to use
to create behaviors to add to our control. We will be adding a 3D object with a rotation
behavior applied to it, importing another 2D image to act as a moving background,
importing some sound to run in the background for our scene, and then setting up the
camera and lighting for viewing the scene in our window.

Loading 2D Images
The first behavior we will create is a DAImage behavior. DirectAnimation provides mul-
tiple methods on the IDAStatics interface to import different types of media into the
model. Each import method is basically the same. You provide it a path to the media file,
and it returns an interface to the type of media behavior you are creating. Listing 24.4
shows how to import an image file, and then tile it so that it fills whatever it is applied to.
Other methods on the IDAImage interface allow you to perform other operations, such
as getting a bounding box for the image or mapping its size to a unit square for use as a
texture.

LISTING 24.4 Importing a 2D Image

1: _bstr_t mediaBase = GetMediaBase();
2: // Import image
3: IDAImagePtr stars = pS->ImportImage(mediaBase +

➥_bstr_t(“Image\\stars.jpg”));
4: // Tile for a continuous background
5: stars = stars->Tile();

500 Hour 24

33 1634xCH24 11/13/99 11:14 AM Page 500

You must pass a fully qualified path to the import methods so that they can find the
media file you are asking for. This can be either a path to a file on disk or a URL.
Relative pathnames will not work in C++, but will work in script from a Web page.
Because we are using some of the sample media files included with the DirectX Media
SDK for this example, there is a utility function called GetMediaBase() in the example
code that uses a registry key installed by the SDK to locate the sample media folder and
place that path in a string variable named mediaBase. Note also that COM methods take
BSTR types as arguments for strings. The wrapper classes use a utility class called
_bstr_t to ease handling of BSTR’s. The Tile() method does just what it says, tiles the
image over wherever this image gets applied. In our case, we will be setting it as a back-
ground image, which gives it the appearance of an infinite background within our win-
dow.

Creating a 3D Object
Next we create a DAGeometry behavior. This is the DirectAnimation class used to repre-
sent and manipulate 3D objects. To import a 3D object, the object must be defined in a .x
file, just like with Direct3D. DirectAnimation will only import simple objects from
DirectX files. It cannot import all the elements that Direct3D is capable of handling in a
DirectX file, only simple objects defined as a single mesh.

After you have imported the object, you can apply other behaviors to it, including 2D
images as textures, transform behaviors to position the object or set it in motion, and
many other behaviors you can experiment with on your own. Listing 24.5 shows how to
import the .x file and scale it to fit our window.

LISTING 24.5 Importing a 3D Object

1: // Import a geometry and scale to fit window
2: IDAGeometryPtr dxGeo = pS->ImportGeometry(mediaBase +

➥_bstr_t(“Geometry\\dx.x”));
3: IDATransform3Ptr scale = pS->Scale3Uniform(.01);
4: dxGeo = dxGeo->Transform(scale);

The IDAStatics::Scale3Uniform() method takes a scale factor and returns an
IDATransform3 interface pointer. We then pass this pointer to the IDAGeometry::
Transform() method to perform the actual scaling. This method returns a new
IDAGeometry interface pointer to the transformed object, and thanks to the assignment
operator of smart pointer classes, we just assign this new interface pointer back to our
old pointer variable so that we don’t have to create explicit intermediate temporary
pointers.

Integrating Media Into Web Pages and Applications with DirectAnimation 501

24

33 1634xCH24 11/13/99 11:14 AM Page 501

Adding Some Motion
Now let’s put the “Animation” in our DirectAnimation model. We will add several rota-
tions to our 3D object, and then put a translation motion on our background (see Listing
24.6).

LISTING 24.6 Adding Motion Behaviors

1: // Create a three rotation behaviors and apply to DX
2: const double PI = 3.14159;
3: IDATransform3Ptr rotx = pS->Rotate3Rate(pS->XVector3, 2);
4: IDATransform3Ptr rotz = pS->Rotate3(pS->ZVector3,5*PI/8);
5: IDATransform3Ptr roty = pS->Rotate3Rate(pS->YVector3,.3);
6: // Apply rotations - order is important!!!
7: dxGeo = dxGeo->Transform(rotx);
8: dxGeo = dxGeo->Transform(rotz);
9: dxGeo = dxGeo->Transform(roty);
10:
11: // Create a translation behavior and apply to stars
12: stars = stars->Transform(pS->Translate2Rate(.01,0));

We create three transformation behaviors, one around each axis, and then apply them to
the object one at a time. There are rotation transformation methods that allow you to
combine the individual steps by defining the vectors around which they operate, but
sometimes it is easier to stay anchored to axes that you are comfortable with.
DirectAnimation uses radians for angles, unless you use one of the variants of the meth-
ods with “Degrees” in the method name. We use the X, Y, and Z vector properties of the
IDAStatics interface to specify the axis of rotation for each transformation. We also cre-
ate a translation behavior and apply it to the stars background image.

502 Hour 24

The order in which you apply transformations to a behavior is important.
For example, if you apply a rotation before a translation, you get a different
result than applying a translation before a rotation. For additional informa-
tion about the affect of changing the order of transformations, see Hour 10,
“Introduction to 3D Concepts.”

Another thing to note about the code in Listing 24.6 is that because the smart pointer
classes return objects instead of HRESULTs, it allows us to use the result of one method
call as an argument to another. In Listing 24.6, we use the XVector3, YVector3, and
ZVector3 properties of the IDAStatics interface, which are really return values from
get_ method calls on the interface. Without the smart pointer support, you would have

33 1634xCH24 11/13/99 11:14 AM Page 502

to break each call out into a separate line, instead of chaining the calls the way we do
here. The result from IDAStatics::Translate2Rate() is also used as an argument for
the IDAImage::Transform() method.

You should also be aware that you can apply 2D transformations to 3D objects and vice
versa in DirectAnimation.

Creating the Camera and Lighting
When creating a 3D scene, you also need a camera and lighting. The camera is the mech-
anism that you use to render the 3D objects into a 2D plane for projection on the screen.
Listing 24.7 shows how to create a camera and lighting, project the scene into 2D, and
then overlay the images into a final image that will be passed to the DirectAnimation
model.

LISTING 24.7 Rendering the Scene

1: // Create a camera and light
2: IDACameraPtr camera = pS->PerspectiveCamera(.4,.1);
3: IDAGeometryPtr light = pS->PointLight;
4: light = light->Transform(pS->Translate3(100, 100, 1000));
5: IDAGeometryPtr geo= pS->UnionGeometry(dxGeo,light);
6:
7: // Render the 3D into the 2D
8: IDAImagePtr dxGeoImg = geo->Render(camera);
9:
10: // Overlay the dxGeoImg on the background
11: IDAImagePtr finalImg = pS->Overlay(dxGeoImg,stars);

The perspective camera works much like a camera in Direct3D. The arguments include
projection and clipping plane distances. Several types of lights can be created. Here we
specify a point light and offset it a great distance over our right shoulder using the
IDAStatics::Translate3() method. Note that the z-axis is coming out of the screen, as
evidenced by the positive third argument to this method. We then use the IDAStatics::
UnionGeometry() method to create a single geometry out of the 3D object and the light,
and render them into a 2D image with the IDAGeometry::Render() method and the cam-
era object. Finally, we merge the image of the 3D object with the background image to
complete the scene.

Adding Sound
We will add one last behavior to our sample: sound. Just like with images and 3D
objects, you can import sound in a variety of formats with a single method call. Listing

Integrating Media Into Web Pages and Applications with DirectAnimation 503

24

33 1634xCH24 11/13/99 11:14 AM Page 503

24.8 shows how to pull in a sound, slow it down to 60 percent of its normal speed, and
set it to loop continuously.

LISTING 24.8 Importing Sound

1: // Import a sound, and send it looping
2: IDASoundPtr sound = pS->ImportSound(mediaBase +

➥_bstr_t(“Sound\\copter2.mp2”))->Sound;
3: sound = sound->Rate(.6);
4: sound = sound->Loop();

One difference from the image and geometry import methods is you must specify that it
is the sound you want from the import operation because the function is capable of read-
ing sound from formats that include other media (that is, MP2 as in the example).
IDAStatics::ImportSound() actually returns a result of type IDAImportationResult,
on which you must retrieve the Sound property. The Rate() method allows you to speed
up or slow down the playback of the sound. The Loop() method just makes the sound
repeat endlessly. Other methods are available to change the phase or gain of the sound or
to apply other effects to the sound through the underlying DirectSound libraries that
DirectAnimation is using.

Animating the Scene
All that is left to do now is to hand off the behaviors we have created to the
DirectAnimation control and set it running. Listing 24.9 shows how straightforward this
step is.

LISTING 24.9 Running the Model

// Set the image and sound on the control and let it run
pVC->Image = finalImg;
pVC->Sound = sound;
pVC->Start();

Basically, you can pass a single DAImage and a single DASound object to the control.
Those behaviors can be compound behaviors, as they are in our example. If you are
using the windowed version of the control (DAViewerControlWindowed), a
BackgroundImage property of the control can be set to fill the background by tiling the
foreground image. The final call, the IDAViewerControl::Start(), sets the model run-
ning and starts the internal clock that DirectAnimation uses to perform timing calcula-
tions for the model.

504 Hour 24

33 1634xCH24 11/13/99 11:14 AM Page 504

Cleanup
By using the smart pointer classes, there is no cleanup remaining to worry about. When
all the interface pointers we created go out of scope at the end of the try block in the
WM_CREATE handler, Release() will be called automatically for each one by their smart
pointer class. If you had gone the pure COM interface route, you would have had to call
Release() on all those pointers yourself.

The DirectAnimation control will be cleaned up by the MFC hierarchy because we set
it as a child window of the View window. When MFC destroys the View, it will destroy
the child control as well with no further effort required on our part.

Doing it the DirectDraw Way
Now that you have seen how to do it the easy way, you might be wondering about the
other way we mentioned: using a DirectDrawSurface and the DAView class. The main
differences between the two approaches from a coding perspective all focus on the ini-
tialization and how the scene gets updated on the screen. When it comes down to creat-
ing the behaviors that compose the scene, it is the same approach of creating the
behaviors one by one and then passing them off to the DAView object.

First you have to initialize DirectDraw and obtain a primary surface and an offscreen sur-
face, which will be used by DirectAnimation. DirectAnimation uses DirectDraw in a
primitive fashion, and it is not compatible with the DirectDraw7 versions of the inter-
faces. So you have to deal with COM a lot more directly than you have in the previous
DirectDraw parts of the book. You have to create the DirectDraw object using a
DirectDrawFactory object, and then use IDirectDraw and IDirectDrawSurface inter-
faces versus the IDirectDraw7 and IDirectDrawSurface7 versions seen earlier in the
book.

Integrating Media Into Web Pages and Applications with DirectAnimation 505

24

If you get the following output in your Debug window within Visual Studio
while running a DirectAnimation application in the debugger: “First-
chance exception in DASample.exe (DANIM.DLL): 0xE0000001: (no

name).” and the control does not run, it means that one of the behaviors
you added to the control did not initialize correctly, and it might keep the
control from running. The only way to isolate the problem sometimes is to
add behaviors one at a time and make sure that they work correctly before
adding more. This is often caused by a media file not being found when try-
ing to import it.

33 1634xCH24 11/13/99 11:14 AM Page 505

To initialize DirectAnimation, you create an instance of the DAView object and get an
interface to it. You will also need an instance of a DAStatics object, which you create
directly. You create both of these through calls to the COM function CoCreateInstance(),
which also requires that you call CoInitialize() at the beginning of your program and
CoUninitialize() at the end of your program to invoke the needed COM services.

After you have obtained the IDAView and IDAStatics interfaces, you can start creating
behaviors from the IDAStatics interface as seen earlier in our example. After you have
all your behaviors created, you pass them and the secondary DirectDraw surface to the
DAView interface, similar to what was done at the end of the example with the
DAViewerControl. You set the DAView running with a call to its StartModel() method,
similar to calling IDAViewerControl::Start().

Finally, you have to manage all updating of the scene by calling the IDAView::Tick()
and IDAView::Render() methods to get DirectAnimation to update the scene on the sur-
face passed to it, and then you have to Blt() the DirectAnimation surface to the primary
surface to update the screen.

If this sounds like a lot of work, it is compared to the DAViewerControl route we have
already covered. But if you want to obtain the benefits of coding at a higher level by
using DirectAnimation, but want to wring every ounce of performance out of it that you
can, this is the route you need to go. A sample project called DADDSample is included
with the source code on this book’s CD-ROM that shows this approach, as well as how
much extra work is required to handle all the interface creation and cleanup required by
the DirectAnimation model without the assistance of smart interface pointer classes.

Sample Web Page Using DirectAnimation
So now you have seen how the DirectAnimation model works in C++ code. But one of
the other big advantages of DirectAnimation is that you can create these kinds of anima-
tions from scripting languages embedded on a Web page. So we will now briefly cover
how to go about this. We will use JScript because its syntax is very similar to what we
have seen so far. But VBScript works equally well. We will not go into detail about each
line of code because we will code the exact same scene we did in C++. In fact, the script
code in Listing 24.10, and contained in the DASample.html file, was created by cutting
and pasting the C++ code into a text editor, adding the HTML code at the top and bot-
tom, doing a find and replace on “->” with “.”, and removing a few other unnecessary
C++ type declarations. Otherwise, it is the exact same code. This is why the #import
style of DirectAnimation programming is so powerful. Besides being a lot easier to code

506 Hour 24

33 1634xCH24 11/13/99 11:14 AM Page 506

than raw C++ COM programming, it allows rapid porting to script if desired. It is actu-
ally easier to code complex animations in C++ in this fashion because of the debugger
support in Visual Studio. After you get them running in C++, you can then port the code
to script quickly as done in Listing 24.10.

LISTING 24.10 DirectAnimation JScript Example

1: <HTML>
2: <HEAD>
3: <TITLE>DirectAnimation JScript sample</TITLE>
4: </HEAD>
5:
6: <OBJECT ID=”pVC”
7: STYLE=”position:relative; left:0; top:0;width:400;height:300”
8: CLASSID=”CLSID:B6FFC24C-7E13-11D0-9B47-00C04FC2F51D”

➥ width=”400” height=”300”>
9: </OBJECT>
10:
11: <SCRIPT LANGUAGE=”JScript”>
12: <!—
13: // Get a DAStatics object and meter coordinates
14: pS = pVC.MeterLibrary;
15:
16: // Set media base
17: mediaBase = “C:\\Visual Studio\\DXMedia\\samples\\multimedia\\media\\”;
18:
19: // Import image
20: stars = pS.ImportImage(mediaBase + “Image\\stars.jpg”);
21: // Tile for a continuous background
22: stars = stars.Tile();
23:
24: // Import a geometry and scale to fit window
25: dxGeo = pS.ImportGeometry(mediaBase + “Geometry\\dx.x”);
26: scale = pS.Scale3Uniform(.01);
27: dxGeo = dxGeo.Transform(scale);
28:
29: // Create a two rotation behaviors and apply to cube
30: PI = 3.14159;
31: rotx = pS.Rotate3Rate(pS.XVector3, 2);
32: rotz = pS.Rotate3(pS.ZVector3,5*PI/8);
33: roty = pS.Rotate3Rate(pS.YVector3,.3);
34: // Apply rotations - order is important!!!
35: dxGeo = dxGeo.Transform(rotx);
36: dxGeo = dxGeo.Transform(rotz);
37: dxGeo = dxGeo.Transform(roty);
38:
39: // Create a translation behavior and apply to clouds

Integrating Media Into Web Pages and Applications with DirectAnimation 507

24

continues

33 1634xCH24 11/13/99 11:14 AM Page 507

40: stars = stars.Transform(pS.Translate2Rate(.01,0));
41:
42: // Create a camera and light
43: camera = pS.PerspectiveCamera(.4,.1);
44: light = pS.PointLight;
45: light = light.Transform(pS.Translate3(100, 100, 1000));
46: geo= pS.UnionGeometry(dxGeo,light);
47:
48: // Render the 3D into the 2D
49: dxGeoImg = geo.Render(camera);
50:
51: // Overlay the dxGeoImg on the background
52: finalImg = pS.Overlay(dxGeoImg,stars);
53:
54:
55: // Import a sound, and send it looping
56: sound = pS.ImportSound(mediaBase + “Sound\\copter2.mp2”).Sound;
57: sound = sound.Rate(.6);
58: sound = sound.Loop();
59:
60: // Set the image and sound on the control and let it run
61: pVC.Image = finalImg;
62: pVC.Sound = sound;
63: pVC.Start();
64:
65: //—>
66: </SCRIPT>
67: </HTML>

The only differences here have to do with creating the object, declaring the script code,
and the way JScript initializes variables and accesses automation objects. The <OBJECT>
tag in HTML lets you embed an ActiveX object in your Web page and initialize some of
the parameters for it (that is, size and position) in that declaration. The tags for declaring
the script are pretty straightforward. The final thing to note here is that in JScript, you
access the methods and properties on an interface with the dot (.) qualifier, versus ->.

Note that in the script, the path to the DirectX Media SDK sample media files is hard
coded. You will need to change this to represent the path on your machine.

Summary
In this hour, we have covered the architecture of DirectAnimation, and how to code a
sample application with a variety of media and behavior types using C++ and JScript. To

508 Hour 24

LISTING 24.10 continued

33 1634xCH24 11/13/99 11:14 AM Page 508

dig deeper, you should look into the documentation and samples included in the DirectX
Media SDK. A lot of good examples and information are there to let you develop much
more complex animations than what we have done here.

Q&A
Q When should I use DirectAnimation to code animations, and when should I

code at a lower level using other DirectX libraries?

A DirectAnimation is very good for creating animations that do not contain too many
objects or behaviors. The main drawback you will find is that as the complexity
and number of contained behaviors of your animation grows, the performance can
get pretty poor. There is no clear-cut, break-even point or way to decide when to go
to lower-level code. If performance is a problem, the first thing to try is to use the
DirectDrawSurface/DAView approach described earlier. If this does not help, you
might have to recode everything using the underlying DirectX libraries. This is
again where you have to make a decision between speedy development and coding
things at a lower level with the DirectX libraries to maintain full control over the
performance and priorities in your application.

Q If I use DirectAnimation code in my application, what libraries will I have to
redistribute to make it work?

A All the end user needs for the DirectAnimation portion of your application to work
is to have Internet Explorer 4 or later installed. The DirectAnimation controls ship
as part of this installation package, so you should not have to redistribute any addi-
tional libraries if they have IE4 or later installed.

Workshop
The Workshop is designed to help you anticipate possible questions, review what you’ve
learned, and begin thinking ahead to put your knowledge into practice. The answers to
the quiz are in Appendix A, “Answers.”

Quiz
1. In what languages can you program DirectAnimation using both normal COM

interfaces and automation interfaces?

2. Which two scripting languages are most commonly used to code DirectAnimation
on Web pages?

Integrating Media Into Web Pages and Applications with DirectAnimation 509

24

33 1634xCH24 11/13/99 11:14 AM Page 509

3. What interface is used to create and modify other behaviors in DirectAnimation?

4. What is the base interface from which all DirectAnimation behavior objects
derive their functionality?

5. How do you assign a background image for a DAViewerControl based animation?
For a DAViewerControlWindowed animation?

6. What are the two units of measurement available for DirectAnimation?

7. At what point does the internal timer used by DirectAnimation start running?

8. If you use a DirectDraw surface with a DAView object, what version of the
DirectDraw interfaces must you use?

Exercises
1. Change the sample application to use a DANumber created with ModifiableBehavior()

for the rotation speed around the x-axis. Add a keyboard handler for the up and
down arrow keys, and increase or decrease the speed of rotation based on keyboard
input by using the SwitchTo() method in these handlers.

2. Change the sample application to make the object rotate around a different axis,
offset from the center of the scene. Experiment with other translation, scaling, and
rotation transformations.

3. Import a movie file and run it in a DirectAnimation control.

4. Apply a DXTransform behavior to the object by using the IDAStatics::
ApplyDXTransform() method (see the JScript sample explode.html for
an example).

510 Hour 24

33 1634xCH24 11/13/99 11:14 AM Page 510

A Answers

B Prepare Your Application for Distribution
with DirectSetup

PART IX
Appendixes

34 1634xPart IX 11/13/99 11:19 AM Page 511

34 1634xPart IX 11/13/99 11:19 AM Page 512

APPENDIX A
Answers
Hour 1, “About DirectX—The Pieces
That Make It Happen”

Quiz
1. What does the acronym COM stand for?

Component Object Model

2. What macro can be used to test the result of QueryInterface()?

FAILED()

3. Which DirectX interface supports game controllers?

DirectInput

4. What is the base class from which all COM objects are constructed?

IUnknown

35 1634xAppA 11/13/99 11:18 AM Page 513

Hour 2, “Our First Step—DirectDraw in a
Windows Application”

Quiz
1. Which window handle should be passed to a DirectDraw clipper object?

That of the topmost window of the applications.

2. What type of DirectDraw surface is created to represent the screen surface?

The primary surface.

3. What type of surface is used to store images for later use?

Offscreen surfaces.

4. What is the definition of blitting?

The transfer of blocks of image data from one surface to another.

Hour 3, “Moving On—Grabbing Control of
the System”

Quiz
1. What window handle must be used when setting the cooperative level?

The top-level window for the application.

2. What function can be used to determine the display modes available?

EnumerateDisplayModes()

3. When using double buffering, which surface receives blits when you redraw the
screen?

The back buffer

4. What is a complex surface?

A surface with one or more attached surfaces.

Hour 4, “Creating the Game Loop”
Quiz

1. What is the standard frequency for the performance counter?

3.19 MHz

514 Appendix A

35 1634xAppA 11/13/99 11:18 AM Page 514

2. What is the resolution of the timeGetTime() function?

1 millisecond

3. True or false: The performance counter is available on all systems.

False

4. True or false: The WM_TIMER message has a higher priority than other messages
in the message queue.

False

Hour 5, “Make It Move—DirectDraw
Animation Techniques”

Quiz
1. What are the two most common 16-bit pixel formats?

C. 5,6,5 5,5,5

2. What are the two types of color keying?

Destination and Source

3. Which function is used to set the color of a surface in DirectDraw?

SetColorKey()

4. Using Z-Ordering, the first image drawn is:

B. In the background

5. True or false: During cleanup you should release DirectDraw surfaces before
releasing DirectDraw object interfaces.

True

Hour 6, “DirectSound—Adding Ambience
and Sound Effects to Your Game”

Quiz
1. What is the purpose of the DirectSound HAL?

The HAL (Hardware Abstraction Layer) is a layer of software implemented by the
DirectSound device driver that provides a uniform interface to the sound hardware.

Answers 515

A

35 1634xAppA 11/13/99 11:18 AM Page 515

2. How is the DirectSound HAL implemented?

The HAL is implemented as an extension to the standard audio device driver,
which means that a DirectSound driver is really just a Windows device driver with
HAL extensions.

3. What is the most important feature of DirectSound?

The most important feature of DirectSound is low-latency audio mixing.

4. To what does the term latency refer?

Latency refers to the delay between when a sound is played programmatically and
when the user actually hears it.

5. What happens if the user doesn’t have a DirectSound driver?

If a user doesn’t have a DirectSound driver, there will more than likely be notice-
able latency delays.

6. What DirectSound COM object represents a physical hardware sound device?

The DirectSound object represents a physical hardware sound device.

7. How do you initially create a DirectSound object?

You initially create a DirectSound object by calling the global
DirectSoundCreate() function.

8. What priority level provides the safest sharing of sound resources with other appli-
cations?

The DSSCL_NORMAL flag specifies the lowest priority level, which provides the
safest sharing of sound resources with other applications.

9. What happens to any associated DirectSoundBuffer objects when a DirectSound
object is released?

When a DirectSound object is released, all associated DirectSoundBuffer objects
are released too.

10. What happens to the playback of a sound if you set the panning value to 10,000?

The entire left channel is attenuated, which means the sound is heard only through
the right channel.

Hour 7, “Applying DirectSound”
Quiz

1. What do you do to give a sound buffer a better chance of being mixed in hard-
ware?

516 Appendix A

35 1634xAppA 11/13/99 11:18 AM Page 516

The first sound buffers that are created and initialized have a better chance of being
mixed in hardware because there is a limited amount of memory available on
sound devices.

2. What Win32 API structure do you use to contain format information about a wave?

The Win32 API structure used to contain format information about a wave is WAVE-
FORMATEX.

3. What method in the CWave class is used to obtain raw wave data?

The CWave::GetData() method is used to obtain raw wave data.

4. What file format serves as the basis for Windows waves?

The RIFF (Resource Interchange File Format) file format serves as the basis for
Windows waves.

5. What is the purpose of the lSirenPan variable in the cityscape application?

The lSirenPan variable in the cityscape application keeps track of the panning
value for the siren sound effect; this allows you to gradually alter the panning so
that the sound moves from one channel (speaker) to the other.

6. What value do you pass to the SetVolume() method to completely silence a sound?

To completely silence a sound, you must pass -10000 to the SetVolume() method;
a value of 0 sets a sound to its original recorded volume level, whereas a value of
10000 amplifies a sound by 100 decibels.

7. Why do you not need to call the Release() method on DirectSound buffers?

You do not need to call the Release() method on DirectSound buffers because
they are automatically released when their associated DirectSound object is
released.

8. What should you do if the memory associated with a sound buffer is freed?

If the memory associated with a sound buffer is freed, you should call the
Restore() method on each buffer and then reinitialize the sound data.

9. How does the move_rate variable impact the footstep sound in the cityscape appli-
cation?

The move_rate variable is used as the basis for calculating the frequency of the
footstep sound; a higher value for move_rate results in a higher frequency, which
makes the footsteps appear to be faster.

10. What method do you call on a sound buffer to see if the buffer memory has been
lost?

The GetStatus() method is called on a sound buffer to see if the buffer memory
has been lost.

Answers 517

A

35 1634xAppA 11/13/99 11:18 AM Page 517

Hour 8, “DirectMusic—Interactive Music”
Quiz

1. What is the purpose of a synthesizer?

The purpose of a synthesizer is to take MIDI data, or non-waveform data, and con-
vert it into waveform output for playback.

2. What are two of the primary features of the Microsoft Synthesizer?

The Microsoft Synthesizer has two main purposes. The first is to provide a soft-
ware synthesizer that can adapt itself to any hardware available. This shields the
DirectMusic programmer from having to deal directly with the hardware itself. The
second major purpose is that by allowing the capability of loading DLS instru-
ments, the waveforms that are played by virtually every sound card will sound
identical.

3. How does DLS architecture allow the Microsoft Synthesizer to produce exact
music sounds on different audio cards?

The DLS architecture allows you to include any of the sampled sounds you want to
use with your game. For any musical piece that is played, the DLS samples are
loaded and played, thereby recreating the exact sounds you recorded.

4. What is meant by the phrase interactive music?

Simply that the music can be changed in response to some kind of user event.

5. What is the purpose of the IDirectMusicPerformance object?

The performance object manages the playback of musical data at runtime. It han-
dles the ports, downloads wave files, manages segments and segment event notifi-
cations, and plays the segments.

6. What kind of instruments can DirectMusic use?

Any of the included Roland GM/GS instruments, or virtually any wave file, can be
used as instruments.

7. What is the difference between a segment object and a template object?

A segment object is a collection of patterns that will be played using a default
chord. A template object is a specialized segment that actually chooses a chord
from a list of available chords. When a signpost occurs within the segment, a new
chord is chosen and the notes following the signpost are transposed to the new
chord.

518 Appendix A

35 1634xAppA 11/13/99 11:18 AM Page 518

8. What is an advantage of multi-track music synthesis?

Multi-track music synthesis allows creating the different parts of the music all at
once. The composer can create the rhythm component in one track and follow with
the melody in another.

9. What is the difference between interactive music and dynamic music?

Interactive music and dynamic music differ in their intended purpose. Interactive
music is simply music that changes—in whatever way, big or small—to the actions
of the user. These changes can be controlled through methods available through the
IDirectMusicPerformance object. Dynamic music is created programmatically
during runtime, using random selections of predetermined musical components. It
is possible to combine the two concepts. For example, you could be playing
dynamic music that you then modify during runtime based on a user event.

Hour 9, “Applying DirectMusic”
Quiz

1. How can I change the instruments that are playing the current segment to a differ-
ent set of instruments?

You can change the instruments that are playing the current segment by creating a
secondary segment from a band object that contains the instruments to which you
want to change. The newly created segment object can then be played, which will
cause the instruments to change to those within the new band object.

2. What are the differences between pan and volume, and where can these values be
changed within the Producer application?

The pan of a note refers to whether the note is being played more to the left
speaker or to the right. The volume of a note refers to the overall loudness of the
volume, sometimes called velocity. These values are set in the PChannel Properties
window or by relocating the instrument number on the grid on the Band Editor
window.

3. What different methods can I use to change my music as it is playing?

There are several different ways to change your music. First, cue a new band for
the currently playing segment object. Second, you could create several different
segment or template objects, and just change between them. Third, you can add
motifs or other secondary segments to enhance the currently playing segment.
These can even occur in response to user events. Finally, you can change the para-
meters of some of the tracks of the currently playing segment. We used this in our
game to change the tempo of the music.

Answers 519

A

35 1634xAppA 11/13/99 11:18 AM Page 519

Hour 10, “Introduction to 3D Concepts”
Quiz

1. The world transform converts coordinates

b. From model coordinates to world coordinates

2. Name the three transformation matrixes that are used in the transformation
pipeline.

World, View, and Perspective

3. Name the three kinds of matrix transformation.

Scaling, Translation, and Rotation

4. What type of transform is used to move an object in a straight line?

Translation

5. True or false: Multiplication of matrices is commutative, meaning that it is the
same in either order.

False

Hour 11, “Rendering the 3D Scene”
Quiz

1. Back-face culling in Direct3D by default removes which faces?

Those with a counterclockwise winding order.

2. A viewport is set on which interface?

The IDirect3D7 interface.

3. How many radians represent a complete revolution?

2π radians

4. An angle of 45 degrees is equal to what angle in radians?

Pi/4, approximately .7854.

5. What value determines how far the view can see?

The far clipping plane.

520 Appendix A

35 1634xAppA 11/13/99 11:18 AM Page 520

Exercises
1. By keeping track of the objects in your scene, you can use sphere visibility as a

basis to avoid rendering objects outside the viewport.

2. The best example is when you turn on alpha blending and render, for example, a
projectile image using D3DBLEND_SRCCOLOR. Black areas should blend into what-
ever is in the destination (back) buffer; if nothing is there, a black pixel is written,
making the z-buffer think something is there. A subsequent render of something
behind the projectile shows a black square outline. Turning the z-buffer off helps
some, but now you lose the benefit of the z-buffer, that is, obscuring the blended
object where it is behind something solid. The answer is, compute the distance to
each visible object, and then render far to near with the z-buffer on. You might still
have occasion to render; for example, if you have a cockpit panel at the end of the
cycle where you always want to see it, in which case it is usually best to disable
the z-buffer.

Hour 12, “Creating Our First Direct3D
Application”

Quiz
1. Which mesh type is based on a central vertex to which all other vertices connect?

A triangle fan connects a single vertex to two or more vertices.

2. In which vertex format does the coordinates match the pixel coordinates of the
screen?

The DIRECT3DTLVERTEX contains coordinates that match those of the screen.

3. Which mesh type requires the most vertices to create?

A triangle list uses the most triangles, containing three vertices per triangle.

4. What is the advantage of indexing a primitive?

It allows vertices that are shared between multiple triangles to be listed only once,
so less vertex storage is required.

5. What is the purpose of applying a specular color to a vertex?

A specular color is used to create a glossy highlight on an object.

Answers 521

A

35 1634xAppA 11/13/99 11:18 AM Page 521

Hour 13, “Adding Textures and Z-Buffers to
the Scene”

Quiz
1. What is the purpose of the z-buffer?

The z-buffer provides pixel-level depth sorting so more distant pixels will not over-
write closer ones.

2. When would you want to use a larger bit depth z-buffer?

Z-buffers consume video memory but are worthwhile. Perhaps the question should
be, “When would you use a shallow one?” If you use shallow viewport depths, use
a shallow z-buffer to keep that much more video memory free, but if you need a
deep viewport, you should look for a greater z-buffer bit depth.

3. How do you define the domain of the z-buffer?

You set the domain of the z-buffer when you set the projection matrix via the near
and far clipping planes.

4. Are there occasions when you would want to disable the z-buffer?

Yes, especially when rendering objects with alpha blending enabled.

5. If so, how do you control whether the z-buffer is enabled?

You can enable and disable the z-buffer with the device SetRenderState() func-
tion.

6. What are uv coordinates?

Uv coordinates define how a 2D texture will be positioned on rendered geometry.

7. Identify the minimum preparation required in Direct3D to render a texture mapped
object.

Assuming the device is in place, you must load a texture, provide mapping coordi-
nates in the geometry’s vertex data, and then set the device’s proper texture, state,
and texture stage state settings.

Hour 14, “Adding Realism Through Lighting”
Quiz

1. What are the three types of lights implemented by the Direct3D lighting pipeline?

Point Lights, Directional Lights, and Spotlights.

522 Appendix A

35 1634xAppA 11/13/99 11:18 AM Page 522

2. How do you enable/disable the Direct3D lighting pipeline?

To enable lighting, call IDirect3DDevice7::SetRenderState(D3DRENDER-
STATE_LIGHTING, TRUE). To disable lighting, call
IDirect3DDevice7::SetRenderState(D3DRENDERSTATE_LIGHTING, FALSE).

3. How do you enable/disable a specific light in Direct3D?

To enable a specific light, call
IDirect3DVertexBuffer7::LightEnable(lightIndex, TRUE), where lightIndex
is the index of the light you want to enable. To disable a specific light, call
IDirect3DVertexBuffer7::LightEnable(lightIndex, FALSE).

4. How do you create a light in Direct3D?

To create a light, you call IDirect3DVertextBuffer7::SetLight(dwIndex,
lpD3DLight7) where dwIndex is the index of the light you are creating, and
lpD3DLight7 is a pointer to a D3DLIGHT7 structure.

5. What is ambient light?

Ambient light is light that has been reflected so many times that it is impossible to
tell what direction it is coming from. In other words, ambient light is the general
level of light in a scene.

6. What is diffuse light?

Diffuse light is light that has a certain direction. It is brightest when it hits a sur-
face directly on.

7. What is specular light?

Specular light is the light that is responsible for making objects look shiny.

8. What is a vertex normal, and what is it used for?

A vertex normal is a vector that is specified for each vertex of an object. The
Direct3D lighting pipeline uses vertex normals during lighting calculations.

9. What do the theta and phi elements of the D3DLIGHT7 structure specify, and what
are their valid ranges?

They specify the angle of the inner and outer cones of a spotlight. Phi should be
between 0.0 and pi, and theta should be between 0.0 and phi.

10. What are the three different attenuation factors?

Constant attenuation, linear attenuation, and quadratic attenuation.

Answers 523

A

35 1634xAppA 11/13/99 11:18 AM Page 523

Hour 15, “Importing 3D Objects and
Animations Into the Scene”

Quiz
1. What is the name of the “special” template that can contain application-specific

information?

The “special” template that can contain application-specific information is the
Header template.

2. What are the three different types of template restrictions?

The three different types of template restrictions are open, closed, and restricted.

3. What utility can you use to convert 3D Studio files into the Direct3D X file for-
mat?

CONV3DS can be used to convert 3D Studio files into the Direct3D X file format.
CONV3DS is included with the DirectX 7 SDK.

4. Which type of Direct3D X file format is better: text or binary?

There are tradeoffs to each file format. Text files are easy to read and edit, however
they are larger and will usually take longer to load. Binary files are smaller in size,
and load quickly, but they cannot be edited as easily.

5. What is the name of the template that is used to store vertices?

The name of the template used to store vertices is the Mesh template. In addition to
vertices, the Mesh template can also hold materials, vertex normals, and texture
coordinates.

Hour 16, “Modeling a Complex World—
Applying Physics and Object Hierarchies”

Quiz
1. Given that vector a = [7 3 9] and vector b = [8 2 4], calculate the dot product

and cross product for the two vectors.

The dot product for a.b is the scalar value 98. The vector product for aXb is the
vector [-6 44 -10].

524 Appendix A

35 1634xAppA 11/13/99 11:18 AM Page 524

2. What are the difference between kinematics, kinetics, and inverse kinematics?

Kinematics deals with calculating object position and orientation without regard to
force. Kinetics deals with calculating the forces acting on objects. Inverse kinemat-
ics deals with calculating object orientation and position from an end-node object
back to the root object.

3. What is the difference between an AABB and an OBB?

An AABB is an axis-aligned bounding box that completely surrounds an object
with the box’s edges aligned with the world axis. An OBB is an oriented bounding
box whose edges are aligned with the object’s axis.

Hour 17, “Introducing DirectInput—Getting
User Input”

Quiz
1. With respect to DirectInput, what does the term “low latency” mean?

Low latency refers to the delay between interacting with an input device (moving
the joystick left) and the game responding to the interaction (moving your charac-
ter left).

2. How does DirectInput offer improved performance over the Win32 API approach
to handling device input?

DirectInput offers improved performance over the Win32 API by skirting the
Win32 layered approach and communicating directly with input device drivers.

3. What COM object acts as an input device manager that allows you to enumerate
and access devices for use with DirectInput?

The DirectInput COM object acts as an input device manager that allows you to
enumerate and access devices for use with DirectInput.

4. What global function must you call to create a DirectInput object?

You must call the DirectInputCreate() global function to create a DirectInput
object.

5. Why do you typically never need to call the Initialize() method to initialize a
DirectInput object?

You typically never need to call the Initialize() method to initialize a
DirectInput object because it is called by the DirectInputCreate() function when
you first create a DirectInput object.

Answers 525

A

35 1634xAppA 11/13/99 11:18 AM Page 525

6. What is an attached device?

An attached device is a device that is installed and physically connected to the sys-
tem.

7. Why can’t you just call CreateDevice() to create joystick device objects as you do
keyboard and mouse devices objects?

You can’t just call CreateDevice() to create joystick device objects as you do key-
board and mouse devices objects because joysticks are optional devices, and there-
fore can’t be assumed to be available. Instead, you must first call EnumDevices()
to determine what joystick devices are attached to the system.

8. What method do you call to determine to what degree an application allows an
input device to be shared with other applications?

The SetCooperativeLevel() method is called to determine to what degree an
application allows an input device to be shared with other applications.

9. What method must you call to obtain unbuffered input data from a device?

You must call the GetDeviceState() method to obtain unbuffered input data from
a device.

10. What must you do to properly clean up a DirectInput session?

To properly clean up a DirectInput session, you must unacquire all previously
acquired devices by calling the Unacquire() method on each, release the devices
by calling the Release() method on each, and then release the DirectInput object
by calling the Release() method on it.

11. Does reading the keyboard with DirectInput inhibit normal Windows keystroke
messages?

No, and there might be times when you use DirectInput to read motion control, and
then rely on WM_KEYDOWN for less time-critical commands, such as to activate a gad-
get. This avoids the occasion when the user strikes and releases a key between
(keyboard) polling events, preventing the application from seeing the event. If you
monitor WM_KEYDOWN, you’re guaranteed to get the leading edge of the keystroke.

Hour 18, “Getting Through to the User—
Force Feedback”

Quiz
1. What is the force of a force feedback effect?

The force of a force feedback effect is the push or resistance associated with the
effect.

526 Appendix A

35 1634xAppA 11/13/99 11:18 AM Page 526

2. What is the magnitude of a force?

The magnitude of a force is the strength of the force.

3. How does gain impact an effect?

Gain serves to weaken the magnitude of an effect’s force.

4. What specific direction does the direction of a force indicate?

The direction of a force indicates the direction from which the force is acting.

5. What is a periodic effect?

A periodic effect is an effect that repeats according to a certain pattern, or cycle.

6. What is an envelope?

An envelope is a set of values that are used to alter the shape of an effect.

7. What is the sustain of an effect?

The sustain of an effect is the period in the effect when the basic force magnitude
is attained (after the attack and before the fade); applies only to effects with
envelopes.

8. What is the attack of an effect?

The attack of an effect is the period at the beginning of the effect when the force
magnitude is approaching its sustain level; applies only to effects with envelopes.

9. What is the fade of an effect?

The fade of an effect is the period at the end of the effect when the force magni-
tude is moving away from its sustain level; applies only to effects with envelopes.

10. What are the four basic types of force feedback effects?

The four basic types of force feedback effects are constant force, ramp force, peri-
odic, and condition.

Hour 19, “3D Sound—From Panning to
Doppler Effects”

Quiz
1. How is sound created?

An object vibrates, which causes the air around it to vibrate. The resulting pressure
waves are what we perceive as sound.

2. What five factors influence our perception of sound?

Rolloff, intensity difference, intensity delay, muffling, and visual-to-aural spatial
location.

Answers 527

A

35 1634xAppA 11/13/99 11:18 AM Page 527

3. Which of the five factors you listed is most critical?

Visual-to-aural spatial location is most important because your users’ eyes will help
convince them the sound came from the direction of the visual object.

4. Why process DirectSound3D parameter changes in a batch (if possible)?

It reduces the overhead of parameter processing during low-latency (time-critical)
processing. Your game will be more responsive.

5. True or false: Setting the sound buffer’s velocity changes its spatial location.

False. The buffer’s velocity, and the listener’s for that matter, are used only for
Doppler effect calculations.

6. True or false: You create the listener object using a secondary sound buffer object.

False. You obtain a listener from the primary sound buffer. The effect of this is you
can have only a single listener.

7. What is rolloff?

The sound pressure attenuation that occurs over distance. The farther away from
the sound’s source you are, the lower in volume the sound will be when it reaches
your ears.

8. What is Doppler shift?

The frequency shift involved when an object making a sound is also in motion. The
object’s motion is added (or subtracted) from the frequency of the sound pressure
waves.

9. Must the orientation vectors be at 90 degrees to each other?

Absolutely. If they’re not, DirectSound3D will make them so (and probably not to
your liking).

10. Can you request DirectSound3D to manage the relative velocities between the
sound buffer and the listener?

Yes, and it’s a good idea to do so. Simply pass DS3DMODE_HEADRELATIVE to
IDirectSound3DBuffer::SetMode() and you’re set.

Hour 20, “Putting Your Game on the Net—
Writing Multiplayer Titles”

Quiz
1. What is a DirectPlay Service Provider? What is an example of one?

528 Appendix A

35 1634xAppA 11/13/99 11:18 AM Page 528

A DirectPlay Service Provider is a specific network transport that handles actual
network transfers, the details of which are hidden by the DirectPlay interface.
TCP/IP (sockets) is an example of a service provider.

2. What two main models of communication are used by DirectPlay?

Peer-to-peer and client/server are the two main communication models used by
DirectPlay.

3. What is a callback function and how is it used?

A callback function is a function passed as a parameter to various IDirectPlay4
functions. The callback function is called by the IDirectPlay4 function many times,
usually once for each item in a list.

4. What is meant by deterministic data?

Deterministic data is data that can be calculated based on previous values. Non-
deterministic data cannot be calculated and must be transmitted over a communica-
tions link.

5. How do you create a secure session?

You can create a secure session by using the SecureOpen() function, and setting
the dwFlags parameter to DPOPEN_CREATE.

6. How are DirectPlay players and groups identified?

DirectPlay players and groups are identified by a DPID type. They are initially cre-
ated using the CreatePlayer() and CreateGroup() functions.

7. What is meant by guaranteed messaging? How do you use it?

Guaranteed messaging means that DirectPlay provides a guarantee that a message
will be delivered to its destination. This is not done by default, and you must use
the DPMSG_GUARANTEED flag when using the Send() function to send the message.

8. What is the DPSESSION_MIGRATEHOST flag used for in the DPSESSIONDESC2 struc-
ture?

The DPSESSION_MIGRATEHOST flag is used to indicate that if the session host in a
peer-to-peer game exits, the duties of session host will automatically migrate to
another computer participating in the session.

9. How might you send a message to all players in a session?

By setting the idTo parameter in a call to Send() to DPMSG_ALLPLAYERS, you will—
in effect—send a broadcast message to all the players in a session.

Answers 529

A

35 1634xAppA 11/13/99 11:18 AM Page 529

10. Can an IDirectPlay4 object be used for more than one session?

Actually, no. An IDirectPlay4 object cannot be used for more than one session.
To create or join multiple sessions, you must create instances of multiple
IDirectPlay4 objects. One for each session. All the DPID values representing play-
ers and groups are specific to each session, and thus, to each IDirectPlay4 object.

Hour 21, “Game Central—Creating Lobbies”
Quiz

1. How does the game client relay information back to the lobby?

By using the functions SendLobbyMessage() and ReceiveLobbyMessage(), a game
client is able to relay information to a lobby client.

2. How does the lobby pass the connection information needed to a game client?

The lobby uses the function SetConnectionSettings() to inform the game appli-
cation of the connection parameters needed to connect to the other computers in
the session. It can also pass this information in the call to RunApplication().

3. When does the lobby begin running a lobby-aware game, and how does it start it?

The lobby begins running the game client when it receives the DPMSG_STARTSES-
SION. It launches the game by calling the RunApplication() method.

4. How does the lobby obtain a list of games that are lobby-aware and that can be
launched by a lobby?

By calling the EnumLocalApplications() method, and providing a pointer to a
LPDPENUMLOCALAPPLICATIONSCALLBACK function.

5. How do you create an address representing an Internet based server for a game to
connect to?

You can use the function CreateAddress() to create an address for a game client
to connect to using a DirectPlay service provider. Alternatively, you can use the
CreateCompoundAddress() function to create a complex address composed of
many elements.

6. What is meant by a “lobby-aware” game?

A lobby-aware game is a game that contains code to check whether it was
launched by a lobby. If the application determines that it was, it gets the connec-
tion settings for the game via a call to GetConnectionSettings().

530 Appendix A

35 1634xAppA 11/13/99 11:18 AM Page 530

7. Which client can change information about a session?

Only the game client (or server) which first called Open() to create a session, and
set the DPOPEN_CREATE flag can change any session data.

Hour 22, “Adding Video with DirectShow”
Quiz

1. What is a DirectShow filter?

A DirectShow filter is a module that processes some part of the media stream.

2. What is a DirectShow pin?

A DirectShow pin is used so that filters can communicate data in a unified way.

3. What happens if the destination rectangle of a DirectShow stream is larger than
that of the stream itself?

The video will be stretched to fit the destination rectangle, just like a regular
DirectDraw surface.

4. Mention a few streaming and nonstreaming DirectShow supported media formats.

Streaming formats: MPEG-1, MPEG-2, MPEG-3, ASF (Advanced Streaming
Format), VOD (Video On Demand), RA (Real Audio) version 4, and RV (Real
Video) version 4.

Nonstreaming formats: AVI, MOV, MIDI, WAV, SND, and Indeo 5.

5. What would happen if you put a 20MB nonstreaming video on your homepage?

The browser would load all 20MB before showing anything, angering a lot of users
visiting your Web site.

Hour 23, “Bring Surfaces to Life with DirectX
Transform”

Quiz
1. What is the difference between the PMARGB32 and ARGB32 pixel formats?

The PMARGB32 is premultiplied to increase performs during alpha blending.

2. What kind of objects do 2D transforms operate on?

DXSurfaces.

Answers 531

A

35 1634xAppA 11/13/99 11:18 AM Page 531

3. What kind of objects do 3D transforms operate on?

Direct3DRMMeshBuilder3.

4. Why is reading pixels from a procedural surface usually slower than reading pixels
from a normal surface?

Reading pixels from a procedural surface is usually slower than reading pixels
from a normal surface because procedural surfaces must use a mathematical func-
tion to create the pixel value.

5. Why are procedural surfaces smaller than normal surfaces?

Procedural surfaces are generally smaller than normal surfaces because they do not
have to store a large two-dimensional array of pixel data.

6. What function must you call before you create your DXTransformFactory object?

CoInitialize().

7. What type of string (ANSI or Unicode) does the
DXTransformFactory::LoadImage() function take?

Unicode.

8. In what order should you release DirectX Transform objects?

You should release objects in the opposite order that they were created.

9. What type of transform is most likely to take advantage of the DXEffect interface?

Transition-type transforms are most likely to take advantage of the DXEffect inter-
face.

10. What does the progress variable in the DXEffect object stand for?

The progress variable in the DXEffect interface is a value between 0.0 and 1.0
that stands for the percentage-complete of a transition-type transform.

Hour 24, “Integrating Media Into Web Pages
and Applications with DirectAnimation”

Quiz
1. In what languages can you program DirectAnimation using both normal COM

interfaces and through automation interfaces?

C++, Visual Basic, and Java.

2. Which two scripting languages are most commonly used to code DirectAnimation
on Web pages?

JScript and VBScript.

532 Appendix A

35 1634xAppA 11/13/99 11:18 AM Page 532

3. What interface is used to create and modify other behaviors in DirectAnimation?

IDAStatics

4. What is the base interface from which all DirectAnimation behavior objects derive
their functionality?

IDABehavior

5. How do you assign a background image for a DAViewerControl based animation?
For a DAViewerControlWindowed animation?

For a DAViewerControl, you set the background by overlaying the foreground
image on the background image with IDAStatics::Overlay() and assigning it to
the IDAViewerControl::Image property. For DAViewerControlWindowed, you can
simply assign it to the IDAViewerControlWindowed::BackgroundImage property.

6. What are the two units of measurement available for DirectAnimation?

Meters and pixels.

7. At what point does the internal timer used by DirectAnimation start running?

When IDAViewerControl::Start() is called.

8. If you use a DirectDraw surface with a DAView object, what version of the
DirectDraw interfaces must you use?

You must use IDirectDraw and IDirectDrawSurface (the first version).

Exercise
The basic process to make the rotation behavior modifiable at runtime is to follow these
steps:

• Add two member variables to the CDASampleView class: a double for the speed
value called m_spd, and an IDANumberPtr for the variable speed rotation behavior
called m_rotnbr.

• Add an IDAStaticsPtr member variable to the CDASampleView class called pS and
initialize it in the WM_CREATE handler instead of the local variable used before
(remove the declaration of pS in the WM_CREATE handler).

• Add a handler for the WM_DESTROY message, and set the IDAStaticsPtr mem-
ber pS to NULL (ps = NULL;) in this handler before the call to the base class
OnDestroy() handler so that it is released before the window is destroyed.

• Add a message handler for the WM_KEYDOWN message. In it, add a switch
statement with handlers for VK_UP and VK_DOWN key codes.

Answers 533

A

35 1634xAppA 11/13/99 11:18 AM Page 533

• Create the modifiable X rotation behavior with the following code by replacing the
call to Rotate3Rate() for the x-axis with the following. Note that you change
from Rotate3Rate() to Rotate3Anim() with a call to
IDAStaticsPtr::Integral() to turn the modifiable rotation value into a rate.
m_spd = 2;
m_rotnbr = pS->ModifiableBehavior(pS->DANumber(m_spd));
IDATransform3Ptr rotx = pS->Rotate3Anim(pS->XVector3,
➥pS->Integral(m_rotnbr));

• In the handler for the VK_UP key, add the following code:
m_spd += .5;
m_rotnbr->SwitchTo(pS->DANumber(m_spd));

• In the handler for the VK_DOWN key, add the following code:
m_spd -= .5;
m_rotnbr->SwitchTo(pS->DANumber(m_spd));

• You can now recompile and run the sample. When you hit the up or
down arrow keys, the rotation of the object will speed up or slow down accord-
ingly.

534 Appendix A

35 1634xAppA 11/13/99 11:18 AM Page 534

APPENDIX B
Prepare Your Application
for Distribution with
DirectSetup

Programming a Windows application can be a complex task. But few tasks
in Windows programming can be as difficult (and as scary) as installation
pro-gramming. After all, even though Windows provides a hardware-inde-
pendent platform for general programming purposes, installation program-
ming requires you to be cognizant of various and subtle version differences
for each and every thing you install. That means every DLL, every COM
object, every data file, every driver, every application—everything. That
includes things you didn’t write yourself. And not just any version of any
given thing you want to install will work with every version of every
Windows component in the field. If installations don’t scare you, you
haven’t been doing this long enough.

That’s what makes DirectSetup so interesting. It’s a very different installation
architecture from any other Microsoft installation support tool. This is likely
because of the fact that Microsoft wants developers to use the DirectX

36 1634xAppB 11/13/99 11:20 AM Page 535

technology, and DirectX affects hardware and driver installation like few other application-
level technologies. Rarely will you otherwise install a video driver, for example, unless
you’re completely reloading a copy of Windows itself. Installing traditional applications
is hard enough, but installing new hardware drivers can easily toast a user’s system in
microseconds. And your customer support will have to pick up the pieces. Over the phone.
Guess who pays for that. Scared yet?

In fact, DirectX installation is so complicated that Microsoft advises against any attempt
to install DirectX components yourself. Just don’t do it. Don’t even consider it. Use
DirectSetup.

Now that I have your attention, I’ll begin a high-level overview of DirectSetup.
DirectSetup’s goal is to relieve you of the burden of installing the myriad of components
and registry changes DirectX will require on any given user’s system. This is a wonder-
ful boon for you, the installation developer, because much of the installation code has
already been written for you. And unlike most other Microsoft redistributable packages,
DirectSetup is completely customizable. Microsoft provides the core functionality and
allows you to tailor the user interface. Most other Microsoft redistributables come as pre-
compiled executables that you can, at best, install silently. You get an overall error code
from the installation process, if you’re lucky. And in most cases, you won’t be so lucky.
So your own installation application will install some required Microsoft technology and
have no clue whether the installation was successful or not! (Can you say Microsoft Data
Access Components 2.1?)

DirectSetup, on the other hand, allows you to provide a callback function. If
you’re not familiar with the term, a callback function is code you provide that

some other routine will execute at some time in the other routine’s lifetime. Callbacks, as
they are known, are typically used for notification. And so it is with DirectSetup. This is
what is so different about DirectSetup—you have the ability of providing your own user
interface to the installation process while still using DirectSetup’s expertise to actually do
all the work. This is very cool.

536 Appendix B

NEW TERM

DirectSetup is used not just for DirectX installation and upgrade in an
application-installation sense. It is also used to set up a networked computer
for DirectPlayLobby interaction. If you’re interested in DirectPlayLobby
and establishing remote users, be sure to review the online DirectSetup
documentation. See especially the DirectXRegisterApplication() and
DirectXUnRegisterApplication() API calls.

36 1634xAppB 11/13/99 11:20 AM Page 536

I’ll leave the design of the user interface to you. If you’ve just completed a hot 3D
first-person shooter game, you have plenty of artwork lying about. Use it! Instead,
I’ll concentrate on a high-level look at how you use DirectSetup. I can’t cover all the
details here, so consider this an introduction. For the details, see the DirectX online
documentation and the DirectSetup sample provided with the DirectX SDK.

To begin, everything you’ll require to install DirectX on an end-user’s system is contained
in the Dxf\Redist\DirectX7 directory on your DirectX SDK CD-ROM. The information
in this directory is not installed on your development system when you install the SDK, so
you’ll have to go back to the CD-ROM and copy the entire contents of the redistributable
directory to your media in a folder named DirectX (case-insensitive). The data in this
directory does have localized installation items, so you can reduce the size of the directory
by removing products for languages you don’t intend to support. In any case, when you
begin the DirectSetup process, you will have to provide DirectSetup with a path to this
information contained on your installation media. Obviously, DirectSetup will copy the
appropriate information from this directory to the user’s system.

You will also need to copy the DSetup.dll and DSetup32.dll DLLs to your setup pro-
gram’s root directory. DirectSetup uses these DLLs to provide the installation support
you’re looking for.

After you have this preliminary work complete, you can turn your attention to developing
your part of the installation—the user interface. Your user interface could consist of
multiple message boxes or be much more complex. However, DirectSetup will provide
you with message box-like information through the callback function that I mentioned
earlier.

You begin the installation by calling the DirectX DirectXSetup() API method, which
looks like this:

int WINAPI DirectXSetup(HWND hWnd,
LPSTR lpszRootPath,
DWORD dwFlags);

It’s fairly simple to use—simply provide the Window handle for the controlling user
interface window, the path where DirectX will find the redistributable information, and
a flag from this set:

� DSETUP_DDRAWDRV

� DSETUP_DIRECTX

� DSETUP_DSOUNDDRV

� DSETUP_DXCORE

� DSETUP_TESTINSTALL

Prepare Your Application for Distribution with DirectSetup 537

B

36 1634xAppB 11/13/99 11:20 AM Page 537

Normally, you’ll install everything DirectX requires, so Microsoft recommends that you
use the DSETUP_DIRECTX flag. The DSETUP_TESTINSTALL flag is special, in that it’s used
only during the installation program’s development (that’s you). If this flag is set, the
installation proceeds as if it were a true installation without actually installing anything.
Note that you won’t receive some installation errors, such as when the user’s disk
becomes too full to continue.

If successful, DirectXSetup() will return one of two values:

� DSETUPERR_SUCCESS

� DSETUPERR_SUCCESS_RESTART

If you are returned DSETUPERR_SUCCESS, you’re done. If you see
DSETUPERR_SUCCESS_RESTART, restart the system. If you receive any other value, it’s
an error value, and you’ll need to take some appropriate action (crashing is not an
appropriate response!).

If you intend to customize the installation by providing a callback function, you must
register it with DirectSetup prior to calling DirectXSetup(). There is no requirement
that you implement a callback function, and if you elect not to, simply don’t register any
callback function with DirectX. However, if you do want to tailor the installation, you do
so through a callback function you register using the DirectXSetupSetCallback() API
call:

INT WINAPI DirectXSetupSetCallback(DSETUP_CALLBACK Callback);

538 Appendix B

Remember that you must register your callback function before you make
the DirectXSetup() call.

The callback function, known to DirectSetup as DirectXSetupCallbackFunction(),
has this signature:

DWORD DirectXSetupCallbackFunction(DWORD Reason,
DWORD MsgType,
char *szMessage,
char *szName,
void *pInfo);

The Reason parameter will be an item from this list:

� DSETUP_CB_MSG_BEGIN_INSTALL

� DSETUP_CB_MSG_BEGIN_INSTALL_DRIVERS

� DSETUP_CB_MSG_BEGIN_INSTALL_RUNTIME

36 1634xAppB 11/13/99 11:20 AM Page 538

� DSETUP_CB_MSG_BEGIN_RESTORE_DRIVERS

� DSETUP_CB_MSG_CANTINSTALL_BETA

� DSETUP_CB_MSG_CANTINSTALL_NOTWIN32

� DSETUP_CB_MSG_CANTINSTALL_NT

� DSETUP_CB_MSG_CANTINSTALL_UNKNOWNOS

� DSETUP_CB_MSG_CANTINSTALL_WRONGLANGUAGE

� DSETUP_CB_MSG_CANTINSTALL_WRONGPLATFORM

� DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE

� DSETUP_CB_MSG_INTERNAL_ERROR

� DSETUP_CB_MSG_NOMESSAGE

� DSETUP_CB_MSG_NOTPREINSTALLEDONNT

� DSETUP_CB_MSG_PREINSTALL_NT

� DSETUP_CB_MSG_SETUP_INIT_FAILED

I won’t belabor each item here because you’ll find the meaning behind each listed in
the online documentation. From this list, though, you can see many are errors, whereas
some are status. Check the result in your callback and manage the situation as required.

MsgType will contain bits appropriate for the MessageBox() API call (an exception is
when MsgType is zero, in which case no action is required from the user, and status can
merely be displayed). For example, if DirectX wanted to ask the user if it was okay to
overwrite a given file, the callback would be executed, and MsgType would be set to
MB_YESNO | MB_DEFBUTTON2.

szMessage is simply a localized status string you can use to display information to the
user regarding the installation or error condition.

If DirectX is installing or upgrading a driver, szName contains a string representation
of the driver. Note this parameter will usually be NULL. The exception is if Reason is
DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE. In this case, the pointer will indicate a valid
string.

pInfo is a pointer to a DSETUP_CB_UPGRADEINFO structure and is only valid if Reason is
SETUP_CB_MSG_CHECK_DRIVER_UPGRADE. The DSETUP_CB_UPGRADEINFO structure is quite
simple:

typedef struct _DSETUP_CB_UPGRADEINFO {
DWORD UpgradeFlags;

} DSETUP_CB_UPGRADEINFO;

Prepare Your Application for Distribution with DirectSetup 539

B

36 1634xAppB 11/13/99 11:20 AM Page 539

UpgradeFlags tells DirectSetup how to proceed with the upgrade of a given driver:

� DSETUP_CB_UPGRADE_CANTBACKUP

� DSETUP_CB_UPGRADE_DEVICE_ACTIVE

� DSETUP_CB_UPGRADE_DEVICE_DISPLAY

� DSETUP_CB_UPGRADE_DEVICE_MEDIA

� DSETUP_CB_UPGRADE_FORCE

� DSETUP_CB_UPGRADE_HASWARNINGS

� DSETUP_CB_UPGRADE_KEEP

� DSETUP_CB_UPGRADE_SAFE

� DSETUP_CB_UPGRADE_UNKNOWN

The flags are fairly self-explanatory, but for additional details, again refer to the online
documentation.

If you’re using a callback to customize the installation, you can expect the callback to
be executed many times during the execution. Simply examine the Reason parameter and
take some action based upon its contents. If you’re being asked to request information
from the user, you might find the MsgType parameter useful. If there is something to
display to the user, use the szMessage information. And if DirectX is installing a driver,
you might need to manage the szName and pInfo data.

Be sure to take a look at the sample DirectSetup installation program supplied with the
SDK, DInstall.exe. Not only should that help address any questions you might have
regarding using the DirectSetup API, but it should also provide you with a hefty amount
of source code you can easily swipe and make your own. That’s always an added benefit!

540 Appendix B

36 1634xAppB 11/13/99 11:20 AM Page 540

3D effects, 81-82
multiple layers, 82-87

calculating layer posi-
tions, 89

image surfaces, 84-85
loading layers, 85-91
structures for storing

information, 83-84
parallax, 82
relative motion, 82
side scrolling, 91
z-ordering, 81-82

3D graphics, 7
3D meshes, 465, 470
3D models, 182, 185
3D objects, 501

axes, 315-316
camera and lighting

effects, 503
collisions

animating reactions,
329-330

coefficient of
restitution, 323-324

detection, 324-328
Newton’s Law of

Restitution for
Instantaneous
Collision With No
Friction, 324

reactions, 322-324
necessity of, 331
testing, 328-329

damping, 315
degrees of freedom, 330
Direct3D X files

animation paths,
297-299

binary-based, 286
formats, 286
frame hierarchy,

296-297, 302-304
header templates, 290
headers, 287-288
primitive data types,

288
sample code, 286-292
structure, 286-292

SYMBOLS

#import directive, 494
#pragma directive, 497
. qualifiers (JScript), 508
= operators, 499
2-speaker virtualization

algorithms, 382, 394
2D space, 186
2D transforms, 472-473

BasicImage, 474
creating custom, 473
list of specifications, 474
not producing transitions,

474
Wipe, 474

3D accelerators, 198
3D audio, 98, 100
3D coordinates, 185
3D display generation,

233-236
cos function, 234-235
render frame function, 233
sin function, 234-235
view transforms, 235
viewer location, 235

INDEX

37 1634x index 11/13/99 11:10 AM Page 541

templates, 288-289
text-based, 286
texture maps, 295-296
vertexes, colors,

293-294
vertexes, normals,

294-295
vertexes, storage,

292-293
frames, 314-315
hierarchies, 314-315
matrices

CrossProduct function,
315-318

DotProduct function,
315-318

motion, 315-316
meshes, 501
modeling packages, 286
motion dynamics, 311-314
planes, 318
points, 316
radians, 502
reactions

collision detection,
319-322

Newton’s Third of
Motion, 310-311

overview, 319
rotations, 318
simple 3D objects

class definitions, 218
class member

functions, 218
constructors, building,

221-222
creating, 218-222, 232
destructors, 222
index array, 219
pre-lit vertices,

220-221
rendering, 223

spaces
model, 311
vectors, 316-318

3D pipelines, 182-183, 199
rasterization, 184
transformation, 183

3D rendering, 199
clipping planes, 200
fields of view, 199
hidden surface removal,

203
objects, volume perspec-

tive, 204
3D scenes

animating, 504
creating (JScript), 506
textures, 247
updating (DirectDraw),

506
z-buffers, 247

3D sound, 376-378
adding to applications,

392
batch mode processing,

383
buffers, 380-381, 395

creating, 384
moving, 385
static, 382

disabling, 391
establishing new parame-

ters, 383
loading data, 394
location, 385
orientation vectors, 391
processing mode, 391
programming, 382
sinks, 380
sources, 380
velocity, 385

3D space, 186-187
3D Studio

files
converting (CONV3DS

utility), 300
formats, 286

modeling package, 286

3D transforms, 477
IDXEffect interface, 478
loading X files, 478
meshes, 478
right-handed convention,

477
16-bit pixel formats, 78

A

absolute information (key-
boards), 342

acc, 198
acceleration (hardware), 99
accelerators (3D), 198
accessing

devices, 340
linker options, 28
sample medial folder, 501

Acquire method
(IDirectInputDevice inter-
face), 338

acquiring devices, 338
keyboards, 342
mouse devices, 346

ActiveX controls, 489
creating, 497
CWnd class, 495
embedding

DirectAnimation
elements as, 493

ActiveX Template Library
(ATL), 494

AddGroupToGroup func-
tion, 416-417

adding
DirectMusic objects to

games, 171
lighting to applications,

269-270, 274
parallel lights, 277
point lights, 275

542 3D objects

37 1634x index 11/13/99 11:10 AM Page 542

spotlights, 276
vertex normals, 271,

274
AddPlayerToGroup func-

tion, 416-417, 439
AddRef function

(IUnknown interface),
11-13

addresses (DirectPlay), 411
algorithms (2-speaker virtu-

alization), 382
alpha blending, 248
alpha values, 470
altering

IDXSurfaces objects, 470
music on playback,

140-141
ambient color, 266. See also

colors
AMMSF_ADDDEFAULT-

RENDERER flag, 457
angles, 502
animation, 6, 470, 502

behaviors, 491
collision reactions,

329-330
creating

DirectDrawSurface
objects, 505-506

importing images, 500
scenes, 500

DirectAnimation, 487-489
DirectDraw

converting key colors,
77-79

selecting key colors, 77
setting the color key,

79-80
source color keying, 76

drawing with the GDI, 496
paths (Direct3D X files),

297-299
running models, 504

screen updating options in
DirectAnimation, 495

sound effects, 395
techniques

color keying, 75-80
scrolling backgrounds,

61-72. See also
scrolling backgrounds

transforms, 482
updating, 506

AnimationKey template
(Direct3D X files), 297-299

ANSI strings, 406, 469
APIs, 402, 491
Application windows, 31
applications (DirectX), 7

3D interfaces, 197
3D sound, 392
adding sounds, 124
animation, 488
compiling, 7
controlling, 35
creating

DirectAnimation, 493
graphics tearing, 42
sample C++, 494
Simple Win32, 27-30
slide-shows, 46-51

DADDSample project,
506

DirectAnimation
errors, 505
models, 492

DirectMusic Producer, 140
DirectPlay applications

launching, 443-445
making lobbyable,

431-432
DirectShow sample, 456
full-screen, 40
GUIDs, 408
input focus, 101

lighting
creating, 269-271,

274-277
parallel lights, 269
point lights, 267
spotlights, 268

loading 3D sound data,
394

lobby-aware applications,
432

MFC AppWizard
generated, 494

registering, 446
removing lighting, 280
resource script, 115
routing messages, 40
sample applications

3D display generation,
233-236

cleanup routines,
adding, 242

Direct3D, initializing,
230-231

DirectDraw, initial-
izing, 228-230

game loops, adding,
240-242

global interface
pointers, 225-227

header includes and
definitions, 224

Hour 17, 344
initialization, 227-228
rendering objects, 223
scene rendering,

236-238
simple 3D objects,

218-222, 232
test running, 243
user input, handling,

238-240
viewports, setting up,

231-232

applications (DirectX) 543

37 1634x index 11/13/99 11:10 AM Page 543

sample DirectX
Transform, 480-481

sharing devices, 341
slide-show, 45
sound buffers, 110
testing, 243
user-friendly, 40
z-buffers, 249-250

architecture
(DirectAnimation), 490

ARGB32 pixel format, 469
arrays

buttonDown, 353
file_names[], 47
lpSlides[], 47
vtable (COM), 10

aspect ratio, 201
ATL (ActiveX Template

Library), 494
attaching

clippers to primary
surface, 33

devices, 337
z-buffers, 251-252

attack (force feedback), 358
attenuation, 268, 384
audio. See sound
authentication, 407, 414
auto center, 365
automation interface

programming, 492
axes

3D objects, 315-316
joysticks, 351
offset, 188

axis-aligned bounding boxes
(AABB), 320

B

back buffers, 43-45
back faces, 204

backgrounds, 501
scrolling backgrounds,

61-72. See also scrolling
backgrounds

constant definitions, 62
controlling motion

through keyboard
input, 64-65

game loop, creating,
66-69

global variables, 62
initialization code,

61-62
initialization, setting

up, 62-64
releasing DirectDraw

interfaces, 65-66
rendering, 69-72
tiling images, 61

backward compatibility, 10
Band Editor (DirectMusic

Producer), 156
bands, 147
bandwidth, causing network

latency, 420
BasicImage transforms, 474
batch mode processing, 383
batch parameter processing,

387
BeginScene function, 238
behaviors

animation, 491
behavior objects, 491
camera and lighting, 503
causing initialization

errors, 505
creating objects, 491
DAGeometry, 501
DAImage, 500
DANumber, 492
devices, 340

keyboards, 341
mouse devices, 344

hierarchies, 491
modifying, 492

motion, 502
root, 492
sound, 503
transformation, 502
user defined event, 492

billboards, 248
bInit flag, 33-34
bit depths (z-buffers), 249
BitBlt function, 25
bitmap surface function, 34
bitmaps

creating, 24
loading, 34
loading to DirectDraw

surfaces, 23-25
size differing from display

resolution, 37
bitmap_surface function, 46
blending colors, 262
blitting images, 23

2D, 187
to the screen, 34

Blt function, 23
BltFast functions, 23
bounding areas, 467
bounding boxes, 320-321
browsing for directories, 8
BSTR’s, 501
buffered input, 338, 345
buffers, 43

DirectPlay Address, 411
extracting mouse data, 347
input devices, 345
keyboards, 342
setting sizes, 345
sound, 99

3D, 380-381, 395
circular nature, 107
creating, 102
frequency, 109
GetStatus method, 130
initializing, 114
locking/unlocking,

106-107

544 applications (DirectX)

37 1634x index 11/13/99 11:10 AM Page 544

losing, 108
play cursors, 106
playing, 108
primary, 104-105
restoring memory, 128
secondary, 104-105
static/streaming, 109
status, 108
stopping, 108
volume, 108
write cursors, 106

storing items, 345
wave sounds, 127

building collision spheres,
326-328

bump mapping, 254
buttons

buttonDown array,
352-353

Media Player ActiveX
controls, 453

C

C++
creating a sample applica-

tion, 494
DirectAnimation, 488, 493
modifying code to work

with HTML, 506
name-mangling algorithm,

10
relative pathnames, 501

calculating
Doppler effects, 388, 391
layer positions, 89
meters per pixel

(DirectAnimation), 500
rolloff, 388
sound location, 386
velocity, 391

callback functions
(DirectSetup), 410,
536-538

customizing installation,
540

EnumEffects, 365
EnumJoystickProc,

349-351
parameters, 411

calling
CoInitialize function, 471
CreateSoundBuffer

method, 105
DirectXSetup API method,

537
init_3deffects function,

393
Play method, 108
Release method, 103
Restore method, 108

camera and lighting 3D
scenes, 503

CancelMessage function
(DirectPlay), 422-423

CancelPriority function
(DirectPlay), 422-423

Cartesian coordinates, 367
CCube object, 269
CCube function, 218
CCube::draw function, 270
CD-ROM, DirectX SDK,

537
CD3DFile object, 300-302
CDASampleView class,

495-496
CDXBaseARGBPtr class,

476
CDXBaseSurface class,

476-477
CetCaps method

(IDirectSound interface),
103

changing z-buffer’s enable
state, 253

chat services (DirectPlay
lobbies), 440-441

chordmaps, 140, 149
chords, 140
Chromeffects, 7
CInitialize function, 471
circles, radians, 201
cityscape application, 124
classes

CDASampleView, 495
creating

CWave, 117-123
definitions, 218
DirectAnimation, 497
member functions, 218

CWnd, 495
DirectX Transform, 476
multimedia support, 123
smart pointer, 499
wrapper, 494, 497

CLASSID parameters, 452
cleaning up

adding routines, 242-243
after DirectInput, 340-341
Cleanup function, 35,

65-66, 84, 396
DirectSound objects,

126
listing, 36
releasing DirectX

Transform objects,
484

Direct3D X files, 305
smart pointer classes, 505

Clear function, 236-237
client/server mode

creating DirectPlay ses-
sions, 407

game communication
models, 402

clippers (DirectDraw), 22
attaching to primary sur-

face, 33
creating, 31

clippers (DirectDraw) 545

37 1634x index 11/13/99 11:10 AM Page 545

clipping, 184
images, 70
models, 183
planes, 200, 249

closed form solutions,
313-314

CLSCTX_INPROC argu-
ment, 471

CLSCTX_LOCAL argu-
ment, 471

CLSCTX_REMOTE argu-
ment, 471

CLSID_DXTransform-
Factory argument, 471

CMMIO multimedia sup-
port class, 123

CMMMemoryIOInfo multi-
media support class, 123

CoCreateGuid function, 408
CoCreateInstance COM

function, 433
CoCreateInstance function,

408, 506
code

callback functions, 536
calling

DirectSoundEnumerate
function, 101

conditional directives, 407
creating

applications, Simple
Win32, 28

DirectInput objects,
339

DirectAnimation, 496
initializing DirectDraw, 31
installation, 536
JavaScript, OnClick han-

dlers, 453
JScript, 506
listings

#import declaration in
DASampleView.h,
497

activating lighting
pipeline, 278

adding motion behav-
iors, 502

animating lights, 279
animating sound

effects, 396
back buffers (retriev-

ing), 44
CCube functions han-

dling materials, 269
CCube constructor, 272
CCube::draw function,

270
cleaning up slide-show

applications, 49
Cleanup function, 36,

484
connection callback

functions, 410
creating 3D listener

objects, 392
creating 3D sound

buffers, 395
creating a parallel

light, 277
creating a point light,

275
creating a spotlight,

276
creating Application

window, 31
creating DXSurface

objects, 481
creating flipping

chains, 43, 48
creating matching sur-

faces (bitmaps), 24
creating transform fac-

tories, 471
creating transforms,

482
creating/attaching

z-buffers, 251
CWave class construc-

tors, 118

CWave class Create
methods, 119-120

CWave class GetData
method, 120-122

CWave class
GetDataLen method,
122

CWave class
GetFormat method,
121

CWave class Play
method, 121

CWnd member
variable in
DASampleView.h,
497

DAViewerControl ini-
tialization, 498

DirectAnimation
JScript example,
507-508

draw routine, 34
drawing current images

and loading adjacent
images, 50

enumerating z-buffer
formats, 249

EnumJoystickProc call-
back function,
349-350

establishing full-screen
display, 47

EXAMPLEH2.RC
resource file, 28

executing transforms,
483

function definition and
bitmap loading code,
24

getting texture bitmaps,
254

global variable defini-
tions (Simple Win32
applications), 29-30

546 clipping

37 1634x index 11/13/99 11:10 AM Page 546

handling z-buffer
format callback, 250

importing 2D images,
500

importing 3D objects,
501

importing sound, 504
initializing DirectDraw,

32
initializing 3D objects,

393-394
initializing

DirectSound objects,
125

loading bitmaps into
texture surfaces, 255

loading default bitmap
images, 34

loading images with
LoadImage function,
481

loading X files for use
in 3D transforms, 478

load_sounds function,
126-127

loop iterates through
available mouse input
data, 346-347

Media Player ActiveX
control, 451

modulation example,
262

OnClick handlers, 453
polling joysticks and

handling input data,
352

procedural surface
objects, 476-477

projection matrix and
render states, 261

querying for new inter-
faces, 12

releasing all DirectX
objects, 396

rendering 3D scenes,
503

RESOURCE.H
resource header, 28

RestoreDSBuffers
function, 128

retrieving back buffers,
48

revised cube
constructor, 260

running 3D model, 504
sample transition in

3D, 479-480
selecting texture

format, 258
setting a 640 by 480

viewport, 203
setting up transforms,

482
slide-show applica-

tions, 46
slide-show navigation,

51
toggling specific lights,

278
Wave.h header file for

the CWave class,
117-118

window message han-
dler, 35

WinMain function, 30,
128-130

MFC AppWizard
generated, 495

mouse cooperative levels,
344

mouse events, 345
multimedia support

classes, 123
polling, 346
setting buffer size, 345
setting data formats

keyboard devices, 341
mouse devices, 344

sound buffer structure, 102
Visual C++, 494

CODEBASE parameters,
452

coefficient of restitution,
323-324

CoInitialize function, 506
CoInitialize(NULL) func-

tion, 456
collision detection (3D

objects), 319-322
bounding box examples,

319-321
bounds, defining, 326-328
implementing, 324-325
spheres, 321
testing, 321-322

collision spheres, 321,
326-328

collisions (3D objects),
322-324

animating reactions,
329-330

coefficient of restitution,
323-324

dot product notations,
322-324

necessity of, 331
testing, 328-329

color keying, 75-80
color key values, 467
destination color keying,

76
key colors

converting, 77-79
selecting, 77

setting the color key,
79-80

source color keying, 76
color keys, setting, 79-80, 88
ColorRGB template

(Direct3D X files), 293-294
ColorRGBA template

(Direct3D X files), 293-294
colors

16-bit pixel formats, 78
blending, 262

colors 547

37 1634x index 11/13/99 11:10 AM Page 547

conversion, 469-470
depth, 41
diffuse color, 221
gradient surfaces, 476
lighting, 266, 271
normals (Direct3D X

files), 294-295
pixel formats, 469
vertexes (Direct3D X

files), 293-294
columns (matrixes), 188
COM (Component Object

Model), 9
advantages, 10
backward compatibility,

10
C++ programming

(DirectAnimation), 494
CoCreateInstance func-

tion, 433, 506
CoInitialize function, 506
CoUninitialize function,

506
definition, 10
determining function

status, 12
DirectInputEffect object,

359
FAILED/SUCCESS

macros, 456
implementation details, 10
initializing, 471
interfaces

DirectAnimation, 492
GUIDs, 12

methods, BSTR types, 501
modifying interfaces, 10
objects, 10

deleting, 11
determining interface

support, 10
DirectInput, 335-336
DirectSound, 100-101
interface support, 10
unloading, 10

reference counting, 12
runtime, 10
transform factories, 470
vtable array, 10

combining transformations,
192

commands, 57
communication during net-

work game sessions, 415
compiling

applications (DirectX), 7
setting compiler to find

DirectX files, 8
Visual C++, 497

complex surfaces, 44
Component Object Model

(COM). See COM
components, 6, 19. See also

interfaces
composing music

knowledge levels
(DirectMusic), 179

loading composition files
(IDirectMusicLoader
interface), 164-166

concatenation (matrixes),
192-194

conditions (force feedback),
359

cones, 384
configuring

compilers, 9
devices, 337
system to begin program-

ming in DirectX, 7
Visual C++ for DirectX

programming, 8-9
conic sections, 384. See also

sound
const static variables, 408
constant definitions,

scrolling backgrounds, 62
constant forces (force feed-

back), 358

constants
DirectSound3D, 383
key, 343
key (DirectInput), 342

constructors (CWave class),
118

controls
DirectAnimation, 489,

495, 505
failure to run, 505

GetControlUnknow func-
tion (CWnd class), 489,
499

CONV3DS utility, 300
conversion values (distance),

389
converting

3D Studio files
CONV3DS utility, 300
to Direct3D X format,

300
color pixel format,

469-470
key colors, 77-79
text-based X files to

binary X files, 306
cooperative levels

DirectDraw, 32
DirectSound objects, 126
setting, 40

coordinates
3D space, 185-186
matrixes, 187
model space, 189
relative, 186
transformations

matrixes, 190
multiple, 192

Coords2d template
(Direct3D X files), 295-296

copying DirectSetup instal-
lation files, 537

cos function, 234-235

548 colors

37 1634x index 11/13/99 11:10 AM Page 548

cost
charging for game play,

403
musical editing packages,

141
CoUninitialize function, 506
Create methods (CWave

class), 118-120
CreateClipper function, 22
CreateControl function

(CWnd class), 497
arguments, 499
parameters, 498

CreateDevice method
creating

DirectInputDevice
objects, 338

keyboard devices, 341
IDirect3D7 interface, 198
IDirectInput interface, 337

CreateEffect method, 359
CreateEvent function,

creating mouse events, 345
CreateGroup function,

416-417
CreateGroupInGroup func-

tion, 416
CreateMeshBuilder func-

tion, 478
CreatePlayer function,

415-416, 437
CreateSoundBuffer method

calling, 105
parameters, 102-103

CreateSurfaces function, 21,
25, 33, 44, 481

CreateTexture function, 254
CreateTextureFrom Bitmap

function, 255
CreateTransform function,

471, 482
create_3dlistener function,

392

create_3dbuffer function,
395

creating
3D models, 182
3D objects, 185, 501
3D sound buffers, 395
ActiveX controls, 497
animations, 502

DirectDrawSurface
objects, 505-506

applications
adding

DirectAnimation
library, 497

DirectAnimation, 493
graphics, tearing, 42
Simple Win32, 27-30

back buffers, 43
backgrounds, 501
behavior objects, 491
bitmaps, 24
C++ applications, 494
clippers, 31
custom 2D transforms,

473
CWave class, 117-123
devices

joysticks, 350
keyboards, 341
mouse, 344

DIDEVICEOBJECT-
DATA structure, 346

DirectAnimation Control,
491

DirectDraw surfaces, 493
DirectInput objects, 336
code, 339
DirectInputDevice objects,

337-338
DirectMusic interface,

172-173
DirectPlay player objects,

415
DirectSound objects,

101-102, 125

DirectSound3D sound
buffers, 384

DXSurface objects, 467,
481

DXTransformFactory
objects, 470-471

filter graphs, 455, 458
flipping chains, 43

listing, 48
games

3D pipelines, 182
DirectMusic interface,

172-173
multiplayer, 402
music, 135

groups
players, 416
staging, 418

GUIDs, 408
IDirect3D7 interface, 198
images, organic textures,

475
input devices, 336
instances of IDirectPlay 4

interface, 408
joystick devices, 350-351
lighting, 265, 269-270,

274
activating lighting

pipeline, 277-278
animating lights in a

scene, 278
LPD3DLIGHT7 struc-

ture, 266
parallel lights, 277
point lights, 275
spotlights, 276
vertex normals, 271,

274
listener objects, 386-387,

392-394
loops, 346
matrixes, 188
Media Player ActiveX

control buttons, 453

creating 549

37 1634x index 11/13/99 11:10 AM Page 549

music, 139-141, 144
basic structure, 142
dynamic, 149
IDirectMusicComposer

interface, 148
MIDI keyboards, 141
multitrack synthesis,

144
musical scores

(DirectMusic
Producer), 154-162

randomness, 148
rhythm (DirectMusic

Producer), 156-158
saving MIDIs, 143
selecting instruments,

147
signposts, 148

polygons, 204
primary sound buffers,

387
procedural surfaces, 476
projection matrix, 201
sample stream objects,

458
scenes (DirectAnimation),

493
camera and lighting

effects, 503
JScript, 506

sessions (DirectPlay),
407-408

slide-show applications,
46-47

cleanup function, 49
drawing slides, 49
full-screen display, 48
loading slides, 48
slide navigation, 51

sound buffers, 102
3D, 380-381
wave sounds, 127

special effects (DirectX
Transform), 470

surfaces, 468
templates (DirectMusic

Producer), 159-162
textures, 255
transform factories,

470-471
transformation behaviors,

502
transforms, 471, 482
triangles, 204
user interfaces, 537
viewing frustum, 199
Visual C++ targets, 407
waves, 115
Web page animation, 488
WindowProc function, 35
WinMain function, 30
wrapper classes, 494
z-buffers, 249-252

CrossProduct function,
315-318

custom interfaces
BasicImage transforms,

474
Wipe transforms, 474

customizing DirectSetup
installation, 538

CWave class
constructors, 118
Create methods, 118-120
creating, 117-123
declaring, 117-118
DirectSound, 124
GetData method, 120-122
GetDataLen method, 122
GetFomat method, 121
IsValid method, 118
sound buffers, 127

Play method, 121
playing sounds, 124
Wave.h header file,

117-118

CWnd class, 495
CreateControl function,

497
arguments, 499
parameters, 498

GetControlUnknown func-
tion, 499

c_dfDIJoystick, 351
c_dfDIKeyboard global

variable, 341
c_dfDIMouse global vari-

able, 344

D

D3DFRAME directory
(SDK Direct3D Immediate
Mode Samples), 189

D3DLIGHT7 structure, 267
D3DLVERTEX

format, 212
structure, 220-221

D3DMath_MatrixMultiply
function, 192

D3DMath_VectorMatrix-
Multiply function, 188

D3DMATRIX structure, 187
D3DTLVERTEX format,

212
D3Dutil.cpp file, 190
D3DUtil_SetProjection-

Matrix function, 201
D3DUtil_SetViewMatrix

function, syntax, 194
D3DVECTOR structure,

186, 316-317
D3DVERTEX format, 212
D3DVIEWPORT7 struc-

ture, 202
DAC (Digital to Analog

Converter), 18
DADDSample project, 506

550 creating

37 1634x index 11/13/99 11:10 AM Page 550

DAImage behaviors, 500
damping 3D objects, 315
DANumber objects, 491
daquid.lib static link

libraries, 497
DASample project, 495
data

3D sound (loading), 394
amounts affecting network

latency, 421
deterministic, 421
formats

DirectInput devices,
338

keyboard devices, 341
game state, 404
inputting from keyboards,

342
music, 137
non-deterministic, 421
relaying game data across

a network, 403
retrieving mouse, 346-347
streams (audio), 100
translating between filters,

455
DAViewerControl object,

495
initializing, 497-498
MeterLibrary property,

499
DDRAW.LIB file, 27
DDSCAPS_TEXTURE

surface capability, 257
DDSCL_EXCLUSIVE flag,

40
DDSCL_FULLSCREEN

flag, 40
DDSD_BACKBUFFER-

COUNT flag, 44
DDSD_CAPS flag, 25
DDSD_HEIGHT flag, 25
DDSD_WIDTH flag, 25
dead reckoning, 421

dead zones, 351-352. See
also joysticks

Debug window (Visual
Studio), 505

declaring
CWave class, 117-118
smart pointer classes, 499

decrementing counters, 10
deferred settings (sound),

384
DEFINE_GUID macro, 408
defining

3D coordinates, 186
index arrays, 219
INITGUID, 29
meshes, 213-214

triangle fans, 214
triangle lists, 213

pre-lit vertices, 220-221
scenes, 189
structures for storing layer

information, 83-84
surfaces

parameters, 25
for storing layer

images, 84
triangles in 3D space, 204
viewing parameters, 199
viewports, 202

degrees, 201
degrees of freedom (kine-

matics)
angular, 312-313
linear, 312-313
number of, 330
orbital, 313
translational, 312

depth, 81
effect of field of view, 200
parallax, 82
Perspective transforms,

183
relative motion, 82

describing sound data, 137

destination color keying, 76
destination rectangles,

streaming video, 461
deterministic data, 421
devices

accessing, 340
acquiring, 338
advanced, 334
attached, 337
behavior, 340
configuring, 337
creating, 336, 344

joysticks, 350
keyboards, 341

DIPROP_BUFFERSIZE
property, 345

DirectInput, data formats,
338

enumerating, 339, 348
input, 334

buffers, 345
capabilities, 339
creating, 339
properties, 339

joysticks, 348-350
enumerating, 348
setting data formats,

351
setting properties, 351

keyboards
acquiring, 342
setting behavior, 341

latency, 334
MIDI, 141
modifying the control

panel, 337
mouse, 344
acquiring, 346
querying for, 337
releasing, 337-339, 343
sharing, 341
state blocks, 261
unacquiring, 343

devices 551

37 1634x index 11/13/99 11:10 AM Page 551

DICONSTANTFORCE
structure, 368-369

DIDEVTYPE_JOYSTICK
parameter, 348

DIEDFL_FORCEFEED-
BACK flag, 363

DIEFFECT structure, 369
DIEFT_CONSTANT-

FORCE flag, 366
DIENUM_CONTINUE

message, 350
DIES_DOWNLOAD flag,

370
DIES_SOLO flag, 370
diffuse color, 221, 266. See

also colors
Digital to Analog Converter

(DAC), 18
DIJOYSTATE structure,

352
DIPROPDWORD header

structure, 345
DIPROP_BUFFERSIZE

property, 345
Direct3D, 198

configuring viewing
frustum, 199

defining
3D coordinates, 186
viewports, 202

graphics engine, 199
initializing, 230-231
initializing DirectDraw,

228-230
lighting pipeline, 265,

277-278
limitations, 244
measurements, 201

Direct3D Immediate Mode,
6

Direct3D Retained Mode, 7
Direct3D X files

3D Studio files, format
conversion utility, 300

animation paths, 297-299

binary-based, 286
Cleanup function, 305
formats, 286
frame hierarchy, 296-297,

302-304
header templates, 290
headers, 287-288
loading, 300-302
primitive data types, 288
reading (CD3DFile

object), 300-302
rendering, 300-305
sample code, 286-292
structure, 286-292
templates, 288-289

AnimationKey,
297-299

ColorRGB, 293-294
ColorRGBA, 293-294
Coords2d, 295-296
FloatKeys, 297-299
FrameTransformMat-

rix, 296-297
Material, 293-294
Matrix4x4, 296-297
Mesh, 292-293
MeshFace, 292-293
MeshNormals, 294-295
MeshTextureCoords,

295-296
TextureFileName,

295-296
TimedFloatKeys,

297-299
Vector, 292-293

text-based, 286, 306
texture maps, 295-296
vertexes

colors, 293-294
normals, 294-295
storage, 292-293

Direct3DRMMeshBuilder3
meshes, 478

Direct3DRMMeshBuilder3::
Load function, 478

DirectAnimation, 7, 487
#import directive, 494
adding

library to projects, 497
sound to scenes, 503

architecture, 490
behaviors

classes, 491
modifying, 492
objects, 491

blitting surface to update
screens, 506

C++, 488, 493
camera and lighting

effects, 503
cleanup, 505
code, 496
COM interfaces, 492
controls failure to run, 505
creating

applications, 493
classes, 497
scenes, animating, 504

DAGeometry behavior,
501

DAImage behaviors, 500
DANumber behaviors, 492
DirectAnimation control,

489
DirectAnimation

Windowed control, 489
disadvantages, 489
embedding elements as

ActiveX controls, 493
flexibility, 488
IDABehavior interface,

491-492
IDAStatics interface,

491-492
importing images, 500
incompatibility issues, 490
initializing, 495-496
integrating DirectDraw,

505

552 DICONSTANTFORCE structure

37 1634x index 11/13/99 11:10 AM Page 552

interfaces, 490-491
Internet Explorer 5, 491
library, 493
meters, 499
models, animating, 502
perspective camera, 503
pixels, 499
programming, 506

model, 491
with scripts, 494
from Visual C++, 493

screen updating options,
495

top down approach, 492
use in Web pages, 506

DirectDraw, 6, 18-22
animation techniques,

color keying, 75-80
clippers, 22
configuring for full-screen

applications, 40
IDirectDraw interface,

19-21
DirectDrawCreateEx

function, 19-20
SetCooperativeLevel

method, 20-21
initializing, 32, 228-230
loading bitmaps to

surfaces, 23-25
setting

cooperation level, 32
screen resolution, 41

surfaces, 21-22
capabilities, 257
creating, 21
primary, 33
z-buffers, 251

DirectDrawCreateEx func-
tion, 19-20, 32

DirectDrawSurface objects
creating animations,

505-506
DXSurface objects, 467

DirectInput, 7, 333-334, 359
advanced input devices,

334
cleaning up, 340-341
COM Objects, 335-336
creating DirectInput

objects, 336
compared to Win32 API,

334
devices, data formats, 338
force feedback, 356

altering effects, 371
creating effects,

367-370
effects, 358
enumerating devices,

363-365
enumerating effects,

365-367
initializing devices,

361-363
playing effects, 370

initializing, 340
key constants, 342-343
keyboards, 341
objects, 335-336

code, 339
creating, 336
releasing, 337

DirectInputCreate function,
336

DirectInputDevice objects,
335

creating, 337-338
initializing, 338
setting data format, 338

DirectInputEffect objects,
335

direction (force feedback),
357

directional lights.
See parallel lights

directional sound, 383-384.
See also sound

DirectMusic, 6, 135
adaptability, 137
altering compositions

during playback, 140
composition limitations,

140
creating music, 139
downloadable sounds

(DLS), 177-178
dynamic music, 147
games

interfaces, creating,
172-173

objects, adding, 171
performance compo-

nents, loading,
173-175

tempos, varying,
175-177

HAL support, 137
IDirectMusicLoader inter-

face
composition files,

loading, 164-166
instruments, 166-168

IDirectMusicPerformance
interface, initializing,
162-164

instruments, automatic
downloading option, 178

interfaces, 148, 178
Microsoft Synthesizer, 137
musical knowledge, 179
Producer, 140

basics, 142-143
importing MIDIs, 144

Roland instrument set, 139
segments, playing, 169
signposts, 148
template objects, 148
tempos, real-time changes,

169-171

DirectMusic 553

37 1634x index 11/13/99 11:10 AM Page 553

DirectMusic Producer
creating

musical scores,
154-162

rhythm, 156-158
templates, 159-162

instruments, selecting,
154-156

launching, 154
playing melodies, 159
projects, 154
saving performances, 162

directories
adding from SDK, 8
Include, 8
lists (Library Files

category), 9
setting Visual Studio

search order, 9
DirectPlay, 7, 402

AddGroupToGroup func-
tion, 417

AddPlayerToGroup func-
tion, 417

application-level messag-
ing, 415

callback functions, 410
client/server sessions, 416
CreateGroup function, 417
CreatePlayer function, 415
creating player objects,

415
deterministic data, 421
Enum functions, 410
game communication

models
client/server mode, 402
peer-to-peer mode,

403-404
grouping, 416
guaranteed messages, 421
GUIDs, 408
HALs, 408
IDirectPlay4 interface,

404-406

InitializeConnection func-
tion, 411

message management
functions, 422

messages, 418
naming specific

players/groups, 407
non-deterministic data,

421
Send function, 416, 418
service providers, 408-409
sessions, 407-408

hosts, 407
joining, 412-414

staging groups, 418
StartSession function, 418

DirectPlay Address buffers,
411

DirectPlay API, 401
DirectPlay lobbies, 428-431

chat services, 440-441
game client, 428-429
game server, 428-431
IDirectPlayLobby3 inter-

face, 432-437
CoCreateInstance

COM function, 433
DirectPlayLobbyCreate

function, 434
EnumLocalApplica-

tions function, 437
game client support,

434-435
GetConnectionSettings

function, 435
RegisterApplication

function, 435
registering games as

lobbyable, 435-437
SetConnectionSettings

function, 434
UnregisterApplication

function, 436
launching DirectPlay

lobby applications,
443-445

lobby client, 428-429
groups, 437-439
sessions, 437, 441-443
users, 437

lobby provider, 430
lobby servers, 428-430
making applications

lobbyable, 431-432
sending/receiving lobby

messages, 444-445
DirectPlayLobby

interactivity, 536
DirectPlayLobbyCreate

function, 434
DirectSetup, 535-536

callback functions, 536
copying installation files,

537
DirectPlayLobby interac-

tion, 536
installing, 540
installing DirectX, 537

DirectShow, 7, 450
filter graphs, creating, 458
filters, 450
initializing, 456
multimedia streams, 457
sample application, 456
streaming, 451

cleanup function, 461
drawing video to

sample stream
objects, 461

sample stream objects,
458-459

setting up file streams,
458

starting video, 460
DirectSound, 6, 97, 113, 375

COM objects, 100
cooperative levels, 126
CWave class, 124
error messages, 125
HAL, 98

554 DirectMusic Producer

37 1634x index 11/13/99 11:10 AM Page 554

hardware acceleration,
98-99

latency, 99
memory, 127
mixing sounds, 114
speed, 138
wave format support, 100

DirectSound objects,
100-101

Cleanup function, 126
creating, 101-102, 125
CreateSoundBuffer

method, 105
lpDS variable, 125
primary sound buffer, 105
releasing, 103, 126
setting cooperative level,

103, 126
DirectSound3D, 380

architecture, 380
Doppler effects, 388
filtering capabilities, 388
listener objects, 386
orientation, 390
processing mode, 391
releasing interfacing, 396
rolloff, 388
setting orientation vectors,

391
velocity, 388

DirectSound3DBuffer
object, 101

DirectSound3Dlistener
object, 101

DirectSoundBuffer object,
100

DirectSoundBuffer objects,
104-105

creating, 102
modifying, 105
panning, 109
setting volume, 108

DirectSoundCreate func-
tion, 101, 125

DirectSoundEnumerate
function, 101

DirectSoundNotify object,
101

DirectX Transform, 465
2D transforms, 473
3D transforms, 477

meshes, 478
right-handed conven-

tion, 477
ability highlights, 466
CDXBaseARGBPtr class,

476
CDXBaseSurface class,

476
creating

procedural surfaces,
476

transforms, 482
custom interfaces, 473

BasicImage transform,
474

IDXEffect interface, 473
LoadImage function, 468
sample application,

480-481
special effects, 470

DirectX
backward compatibility,

11
creating 3D objects, 185
DirectAnimation, 487. See

also DirectAnimation
architecture, 490
behavior objects, 491
disadvantages, 489
flexibility, 488
incompatibility issues,

490
interfaces, 490
programming, 493

DirectInput, 333-334. See
also DirectInput

advanced input
devices, 334

COM objects, 335-336

DirectMusic. See
DirectMusic

DirectPlay. See DirectPlay
DirectSetup. See

DirectSetup
DirectShow. See

DirectShow
DirectSound. See

DirectSound
hidden surface removal,

203
importing 3D objects into

DirectAnimation, 501
installing, 537
interfaces

cautions, 33
releasing, 36

Media SDK 7
2D transform specifica-

tions, 474
documentation short-

comings, 491
programming, 7
texture management, 258
Transform, 465-466
Transform Factories,

470-471
version compatibility

concerns, 382
z-buffers, 206

DirectX 7 SDK
CD3DFile object, 300-302
CONV3DS utility, 300
interfaces, 6
template listing, 306

DirectXSetup API method,
537-538

DirectXSetupCallbackFunc-
tion function, 538

displaying
animated transforms, 483
modes available at

runtime, 42
distance, rolloff, 388

distance, rolloff 555

37 1634x index 11/13/99 11:10 AM Page 555

DI_DEGREES constant,
368

DLLs
DirectSetup’s installation

support, 537
ordinals, 10
versioning, 10

DLS (downloadable
sounds), 138

creating instruments, 147
DirectMusic, 177-178

Doppler effects, 377, 388
cumulative nature, 388
DirectSound3D, 388
setting, 396
sound processing mode,

391
dot product, 317-318
DotProduct function,

315-318
double buffering, 43
Download method

(IDirectInputEffect inter-
face), 360

downloadable sounds. See
DLS

DPNAME structure, 406
DPSESSIONDESC2 struc-

ture, 441-442
DPSESSION_CLIENTSER-

VER value, 413
DPSESSION_JOINDIS-

ABLED value, 413
DPSESSION_MIGRATE-

HOST value, 413
DPSESSION_NEWPLAY-

ERDISABLED value, 413
DPSESSION_PASSWOR-

DREQUIRED value, 413
DPSESSION_PRIVATE

value, 413
DPSESSION_SECURE-

SERVER value, 413
draw function, 218, 223

DrawImage function, 35
DrawIndexedPrimitive

function, 216-217
drawing, 205. See also

rendering
graphics, 42
indexed primitives,

216-217
meshes, 215
rendering order, 248
scenes with the GDI, 496
slides, 49
on a surface, 23
video to sample stream

object, 461
DrawPrimitive function,

215-216
drivers (audio devices), 98
DS3DMODE_HEADRELA-

TIVE parameter, 391
DS3DMODE_NORMAL

parameter, 391
DS3D_DEFERRED con-

stant, 383
DS3D_IMMEDIATE con-

stant, 383
DS3D_MAXDOPPLER-

FACTOR values, 388
DS3D_MAXROLLOFF-

FACTOR values, 389
DS3D_MinDOPPLERFAC-

TOR values, 388
DS3D_MINROLLOFFFAC-

TOR values, 389
DS3MODE_DISABLE

parameter, 391
DSETUP_DIRECTX flag,

538
duration, 142

force feedback, 357
notes, 143

dvMaxZ parameter, 203
dvMinZ parameter, 203

dwBPP parameter
(SetDisplayMode func-
tion), 41

dwCurrentPlayers value,
413

dwFlags parameter, 25
Flip function, 45
Open function, 413
SetDisplayMode function,

41
values, 413

dwHeight parameter
(SetDisplayMode func-
tion), 41, 202

dwIndex parameter
(SetLight function), 266

dwLevel parameter
(SetcooperativeLevel func-
tion), 104

dwMaxPlayers value, 412
dwRefreshRate parameter

(SetDisplayMode func-
tion), 41

dwSize element, 25
dwSize value, 413
dwVersion parameter

(DirectInputCreate func-
tion), 336

dwWidth parameter
(SetDisplayMode func-
tion), 41, 202

dwWriteBytes parameter
(Lock method), 106

dwWritePosition parameter
(Lock method), 106

dwX parameter, 202
dwY parameter, 202
DXEffect objects

3D transforms, 477
drawing the next step of a

transition, 483
DXPtrFillInfo structure,

477

556 DI_DEGREES constant

37 1634x index 11/13/99 11:10 AM Page 556

DXSurface objects, 467
creating, 467, 481
functions, 467
loading images, 481

DXSurfaceFactory object
(LoadImage function), 468

DXSurfaces objects, color
conversion, 469-470

DXTransformFactory
objects, creating, 470-471

dynamic music, 140,
147-149

E

effects (force feedback),
356-358

creating, 367-370
enumerating, 365-367
explosions, 371
gun fire, 372
identifiers, 362
playing, 370
polar coordinates, 369

embedding
ActiveX objects into Web

pages, 508
DirectX applications into

HTML pages, 7
embossing, 254
enabling

lighting pipeline, 277-278
z-buffers, 253

encrypted messages, 419
end effectors, inverse kine-

matics, 314
EndScene function, 238
EnumConnections function,

409-411
EnumDevices method,

337-339, 348

EnumDisplayModes func-
tion (IDirectDraw4 inter-
face), 42

EnumEffects method, 365
enumerating

devices, 339, 348
force feedback devices,

363-365
force feedback effects,

365-367
EnumFFJoystickProc call-

back function, 363
EnumGroups function,

438-439
EnumGroupsInGroup func-

tion, 439
EnumJoystickProc callback

function, 349-351
EnumLocalApplications

function, 437
EnumSessions function, 415,

442
envelope (force feedback),

357
environments (Visual C++

programming), 494
errors

DirectSound, 125
fatal error C1083, 497
multiplying matrixes,

192-194
Euler angles (3D objects),

318
event behaviors, 492
exclusions, 497
executing transforms, 483.

See also transforms
explosion effect, 371
extensions

HAL, 98
multimedia, 7

E_INVALIDARG message,
201

F

faces
back, 204
front, 204

fade (force feedback), 358
FAILED macros (COM), 12,

456
falloff element (spotlights),

268
far clipping plane, 200
fAspect parameter

(D3DUtil_SetProjection-
Matrix function), 201

fatal error C1083, 497
fdwSound parameter

(PlaySound function), 115
fFarPlane parameter

(D3DUtil_SetProjection-
Matrix function), 201

fFOV parameter
(D3DUtil_SetProjection-
Matrix function), 201

field of view
clipping, 184
effect on depth perspec-

tive, 200
hidden surface removal,

184
parameters, 199
Perspective Transforms,

183
zoom, 200

files
MIDI, 137
RIFF, 115, 123
wav., 115
X (loading), 478

file_names[] array, 47
FillSamples function, 477

FillSamples function 557

37 1634x index 11/13/99 11:10 AM Page 557

filters
DirectShow, 450
filter graphs, 450

creating, 455, 458
MPEG video

rendering, 455
ordering, 455

graph filters, 454
pins, 455
rendering, 454
source, 454
transform, 454

flags
3D sounds, 382
DDSD_BACKBUFFER-

COUNT, 44
indicating scope of enu-

merated devices, 348
installing DirectX, 538
Open function

(IDirectPlay4 interface),
413

PlaySound function,
115-116

priority levels, 104
setting up for full screen,

40
sound buffer status, 108
specifying 3D processing

algorithms, 382
Win16MuteX, 23

flight yokes, 334
Flip function, 44-45
flipping chains, 43, 48
floating point progress vari-

able (IDXEffect interface),
473

FloatKeys template
(Direct3D X files), 297-299

fNearPlane parameter
(D3DUtil_SetProjection-
Matrix function), 201

force feedback, 335, 356-358
altering effects, 371
creating effects, 367-370
DirectInputEffect object,

359
effects, 358

explosion, 371
gun fire, 372

enumerating devices,
363-365

enumerating effects,
365-367

initializing devices,
361-363

joysticks, 334
playing effects, 370

formats, textures, 258
forward kinetics, 312-314
frame hierarchy (Direct3D

X files), 296-297, 302-304
frames, 58-60

3D objects, 314-315
frame time, scrolling

backgrounds, 68-69
timers (smooth playback),

59-60
QueryPerformance-

Count function, 60
QueryPerformanceFre-

quency function, 60
selecting, 59-60

FrameTransformMatrix
template (Direct3D X
files), 296-297

Free method, 118
frequency (sound buffers),

109
front faces, 204
front vectors, 390
frustum

clipping planes, 200
compensating for rectan-

gular screen, 199
fFOV parameter, 201
setting limits (z-axis), 200

full-screen graphics, 40
displays, 47
setting cooperative level,

40
functions, 108. See also

methods
accelerated, 198
AddPlayerToGroup, 439
BeginScene, 238
callback, 410
callback (DirectSetup),

536
CCube object, 269
CCube, 218
CDXBaseARGBPtr class,

476
CDXBaseSurface class,

476-477
class member functions,

creating, 218
Cleanup, 65-66, 84, 305
Clear, 236-237
CoCreateInstance COM

function, 433
cos, 234-235
CreateClipper, 22
CreatePlayer, 437
creating

DirectSound objects,
101, 125

listener objects, 392
meshes, 478

CrossProduct, 315-318
CWnd class, 497
D3Dutil.cpp file, 190
DirectDrawCreateEx,

19-20
DirectPlayLobbyCreate,

434
DotProduct, 315-318
draw, 218, 223
DrawIndexedPrimitive,

216-217
drawing on surfaces, 23
DrawPrimitive, 215-216

558 filters

37 1634x index 11/13/99 11:10 AM Page 558

EndScene, 238
EnumGroups, 438-439
EnumGroupsInGroup, 439
EnumLocalApplications,

437
EnumSessions, 442
GetConnectionSettings,

435, 444
helper (Direct3D), 188
IDirectMusicPerformance

object, 144-146
IDirectPlay4 interface,

404-406
IDXEffect interface, 473
IDXSurface interface, 467
init ddraw, 229
IUnknown interface, 11
load images, 63-64, 85
mathematical, defining

surfaces, 475
Open, 442
PeekMessage, 67
playing sound, 115
procedural surfaces, 475
QueryPerformanceCount,

60
QueryPerformance-

Frequency, 59-60
Receive, 440-441
RegisterApplication, 435
Release, 445
render frame, 71-72, 88,

233
RunApplication, 443
SendChatMessage, 440
SetColorKey, 79-80, 88
SetConnectionSettings,

434
sin, 234-235
timeGetTime, 59
UnregisterApplication,

436
video playback, 460
WinMain, 66, 240-242

G

gain (force feedback), 357
game clients, 428-429

lobby support, 434-435
game loops, 55-57, 346

adding, 240-242
scrolling backgrounds,

66-69
frame time, checking,

68-69
message loop, entering,

67
timing parameters,

66-67
WinMain function, 66

game servers, 428-431
game states, 404
games

clipping, 184
communication models

client/server mode, 402
peer-to-peer mode,

403-404
creating 3D pipelines, 182
DirectAnimation program-

ming, 489
DirectMusic

adding objects, 171
creating interfaces,

172-173
creating performance

components, 173-175
creating tempos,

175-177
DirectPlay sessions,

407-408, 412-414
force feedback, 335
input devices, latency, 334
Internet/network, 7, 415

latency, 419-422
lighting, 184
Lobby-Aware, 432-444

low-latency audio mixing,
99

mouse role, 346
multiplayer, 401
player objects, 415
security, 403
Self-Lobbied games, 432
sessions (groups), 416
sound, 114

level variant, 114
music, 135-137
realism, 387
storing wave files, 114

spectators, 416
Stand-Alone games, 432

GDI (Graphics Device
Interface), 23

BitBlt function, 25
converting pixel formats,

24
disadvantages, 23
drawing scenes, 496
functions, 23

General MIDI set, 138
GetAttachedSurface func-

tions, 44
GetBounds function, 467
GetCapabilities method

(IDirectInputDevice inter-
face), 339

GetColorKey function, 467
GetConnectionSettings

function, 435, 444
GetControlUnknown func-

tion (CWnd class), 499
GetData method (CWave

class), 120-122
GetDataLen method

(CWave class), 122
GetDeviceData method

IDirectInputDevice inter-
face, 338

retrieving mouse data, 347

GetDeviceData method 559

37 1634x index 11/13/99 11:10 AM Page 559

GetDeviceState method
IDirectInputDevice inter-

face, 338
joystick input data, 352
keyboards, 342

GetDeviceStatus method
(IDirectInput interface),
337

GetDirectDrawSurface
function, 467

GetEffectStatus method
(IDirectInputEffect inter-
face), 361

GetFormat method (CWave
class), 121

GetFrequency method, 109
GetMediaBase function, 501
GetMessage command, 57
GetMessageCount function

(DirectPlay), 422-423
GetMessageQueue function

(DirectPlay), 422
GetPan method, 109
GetPixelFormat function,

467
GetProperty method

(IDirectInputDevice inter-
face), 339

GetStatus method, 108, 130
GetVolume method, 108
get_Capabilities function

(IDXEffect interface), 473
get_Duration function

(IDXEffect interface), 474
get_Progress function

(IDXEffect interface), 474
get_StepResolution function

(IDXEffect interface), 474
global identifiers

GUID_SysKeyboard, 341
GUID_SysMouse, 344

global interface pointers,
225-227

global variables. See also
variables

c_dfDIKeyboard, 341
c_dfDIMouse, 344
lpDD, 24
pJoystick, 350
scrolling backgrounds, 62
Simple Win32 applica-

tions, 29
Globally Unique Identifiers

(GUIDs), 11, 408
gradients, 476
graph filters, 454
graphics

2D transforms, 472-473
3D, 185, 501
animations, 470, 487-489,

502
blending by alpha values,

470
clipping, 183-184
control transformations,

190
DirectX Transform, 7
DiretDraw, configuring

screen surface, 40
double buffering, 43
drawing slides, 49
full-screen displays, 40, 47
hidden surface removal,

184
loading

load time, 48
into surfaces, 468

meter space, 500
persistence of vision, 42
quality degradation, 40
rendering, 183
slide-show applications,

45
tearing, 42
texturing, 184
transforms, 183, 189, 465
vectors, 186
vertical refresh, 42

Graphics Device Interface
(GDI). See GDI

groups
creating, 416
DirectPlay lobbies,

437-439
players, 416
staging, 418

guaranteed messaging,
419-422

GUIDs (Globally Unique
Identifiers), 11, 408

guidApplication value, 412
representing service

providers, 411
storing, 408

GUID_SysKeyboard global
identifier, 341

GUID_SysMouse global
identifier, 344

gun fire effect, 372

H

H values, 190
HALs (Hardware

Abstraction Layers), 98,
137, 198, 408

handles, passing to main
application window, 341

hardware
3D, 7
3D pipelines, 182-183
acceleration, 98-99
attached devices, 337
joysticks, 348
mouse, 344
sound, 98, 376

cards, 136
multiple devices, 101
querying for capabili-

ties, 103

560 GetDeviceState method

37 1634x index 11/13/99 11:10 AM Page 560

varying capabilities, 6
video, connection inter-

faces, 198
z-buffer support, 249

Hardware Abstraction
Layers. See HALs

Hardware Emulation
Layers (HELs), 198

head-related transfer func-
tion, 379

headers
includes and definitions,

224
structures

(DIPROPDWORD), 345
HELs (Hardware

Emulation Layers), 198
helper functions (Direct3D),

188
D3DMath_MatrixMulti-

ply, 192
D3DUtil_SetViewMatrix

function, 194
Hertz, 109
hEvent parameter

(CreatePlayer function),
416

hidden surface removal,
183-184

hierarchies
3D objects, 314-315
behaviors, 491

hInst parameter
(DirectInputCreate func-
tion), 336

hmod parameter
(PlaySound function), 115

hosts (sessions), 407
Hour23.cpp, 480
HTML

embedding DirectX appli-
cations into pages, 7

scripts (programming
DirectAnimation), 494

tags
<PARAM>, 452
<OBJECT> tags, 508

using existing C++ code,
506

I

IDABehavior interface,
491-492

IDAGeometry interface,
Transform method, 501

IDAImage interface,
image features, 500
vector properties, 502

IDAStatics interface, 491
ImportSound function,

504
ModifiableBehavior func-

tion, 492
Pixel property, 499
Scale3Uniform method,

501
IDAView interface, 489
Render method, 506
IDAViewerControl inter-

face, 490
identifiers

(DAViewerControl), 499
IDirect3D7 interface, 198
IDirect3DDevice7 interface,

198
BeginScene method, 237
Clear method, 236-237
DrawIndexedPrimitive

method, 217
EndScene method, 237

IDirectDraw interface
(DirectDraw), 19-21

DirectDrawCreateEx func-
tion, 19-20

legacy, 11
SetCooperativeLevel

method, 20-21

IDirectDraw4 interface,
SetDisplayMode function,
41

IDirectDrawMediaStream
interfaces, 459

IDirectDrawSurface4,
sample stream objects, 459

IDirectDrawSurface7,
ReleaseDC function, 26

IDirectInput COM inter-
face, 336

IDirectInput interface, 337
IDirectInputDevice inter-

face, 338-339
IDirectInputDevice2 inter-

faces, 350
IDirectInputEffect inter-

face, 360
IDirectMusicChordMaps

interface, 148
IDirectMusicComposer

interface, 148
IDirectMusicLoader inter-

face
composition files, 164-166
instruments, 166-168

IDirectMusicPerformance
interface

initializing, 162-164
playing segments, 169

IDirectMusicPerformance
object, 137-139

automatically loading
instruments, 147

functions, 144-146
interaction with

DirectMusic interfaces,
146

IDirectMusicSegment
objects, 146-148

IDirectMusicStyle interface,
148

IDirectMusicTrack objects,
146

IDirectMusicTrack objects 561

37 1634x index 11/13/99 11:10 AM Page 561

IDirectPlay4 interface, 404,
440

creating instances, 408
EnumConnections func-

tion, 409
function values, 413
functions, 404-406
Open function, 412
SendEx function, 422
union members, 407

IDirectPlay4 objects, 401
IDirectPlayLobby3 inter-

face, 406, 432-437, 446
CoCreateInstance COM

function, 433
DirectPlayLobbyCreate

function, 434
EnumLocalApplications

function, 437
game client support,

434-435
GetConnectionSettings

function, 435
RegisterApplication func-

tion, 435
registering games as

lobbyable, 435-437
SetConnectionSettings

function, 434
UnregisterApplication

function, 436
IDirectSound interface,

101-104
IDirectSound3DBuffer

interface, 380
Get/SetMode methods,

391
Get/SetPosition methods,

385
Get/SetVelocity methods,

385
GetAllParameters method,

383
methods, 380-381
SetAllParameters method,

383

IDirectSound3DListener
interface, 380, 386

CommittDeferredSettings
method, 384

Get/SetDopplerFactor
method, 388

Get/SetOrientation
methods, 391

Get/SetPosition methods,
389

Get/SetRolloffFactor
method, 389

methods, 387
IDirectSoundBuffer inter-

face, 105-108
IDirectSoundeDlistener

interface
Get/SetVelocity methods,

389
SetDistanceFactor method,

386
IDXEffect interface

(DirectX Transform), 473
3D transforms, 478
floating point progress

variable, 473
functions, 473
Wipe transform, 474

IDXSurface interface
altering objects, 470
functions, 467

IDXSurfaceFactory inter-
face

CreatSurface function
parameters, 468
syntax, 467

LoadImage function, 481
parameters, 469
syntax, 469

IDXSurfaceFactory objects,
467

IDXTransformFactory,
CreateTransform function

parameters, 472
syntax, 471

images, 49. See also
graphics

2D transforms, 472-473
3D, 185, 501
animations, 470, 487-489,

502
blending by alpha values,

470
blitting, 34, 187
clipping, 70, 183-184
control transformation,

190
hidden surface removal,

184
input/output, 472
inverting, 474
loading

DXSurface objects,
481

into surfaces (DirectX
Transform), 468

meter space, 500
mirroring, 474
rendering, 183
rotating, 474
setting as backgrounds,

501
special effects (DirectX

Transform), 470
stretching/shrinking, 37
texturing, 184
tiling, 61, 500
transforms, 183, 189, 465
vectors, 186

IMAGE_COUNT constant,
47

implementation details
(COM), 10

importing
3D objects, 501
images, 500-501
MIDIs to Producer, 144

ImportSound function
(IDAStatics interface), 504

562 IDirectPlay4 interface

37 1634x index 11/13/99 11:10 AM Page 562

Include directory, 8
Include files, 8
increasing zoom, 200
incrementing counters, 10
index arrays, defining, 219
indexed primitives,

drawing, 216-217
indexing a mesh, 216-217
init draw function, 229
Init function, 31, 125-126
Init.cpp, 480
InitDTrans.cpp, 480
INITGUID, defining, 29
Initialize method

IDirectInput interface, 337
IDirectInputDevice inter-

face, 338
IDirectInputEffect inter-

face, 360
InitializeConnection func-

tion, 411
initializing

applications, 227-228
background scrolling,

61-64
DAViewerControl objects,

497-498
devices, joysticks, 350
Direct3D, 230-231
DirectAnimation, 495-496
DirectAnimation within

DirectDraw, 506
DirectDraw, 31-32
DirectDraw for use with

Direct3D, 228-230
DirectInput, 340
DirectShow, 456
DirectSound buffers, 127
DirectSound objects, 125
force feedback, 361-363
IDirectMusicPerformance

interface, 162-164
load images function,

62-64
multimedia stream, 456

pointer values to NULL,
30

sound buffers, 114
init_3deffects function,

392-393
input

3D mesh, transforms, 465
buffered, 338, 345
devices

advanced, 334
buffers, 345
capabilities (retriev-

ing), 339
creating, 336, 339
DirectInput, 333
keyboards, 341
joysticks, 348-350
mouse, 344-345
properties, 339

DirectInput interface, 7
focus, 101
images, transforms, 472
polling joysticks for, 350
unbuffered, 338

installing
DirectSetup, 540
DirectX, 537-538
to drive C:, 8
programming, 535-536

instruments
automatic loading of, 147,

178
Band Editor, setting, 156
creating from recorded

sounds, 147
establishing

(IDirectMusicLoader
interface), 166-168

Microsoft Synthesizer, 138
MIDI, 138
selecting, 147, 154-156

intensity delay (sound), 379
interactivity (music),

137-139

interface determination
(IUnknown interface), 10

interface pointers, 225-227
interfaces, 19. See also com-

ponents
3D applications, 197
backward compatibility,

11
COM, 492

GUIDs, 12
IDirectInput, 336
object support, 10

DirectDraw objects, 32
DirectInput, 335
DirectMusic, 148

games, adding,
172-173

DirectX
cautions, 33
releasing, 36

DirectX SDK, 6
global interface pointers,

225-227
IDABehavior, 491
IDAStatics, 491
IDAView, 489
IDAViewerControl, 490
IDirect3D7, 198
IDirect3DDevice7, 198
IDirectInputEffect, 360
IDirectMusicLoader

composition files,
164-166

instruments, 166-168
IDirectMusicPerformance,

144-146, 162-164
IDirectPlay4, 404, 440
IDirectPlayLobby3, 406,

432-437, 446
CoCreateInstance

COM function, 433
DirectPlayLobbyCreate

function, 434
EnumLocalApplica-

tions function, 437

interfaces 563

37 1634x index 11/13/99 11:10 AM Page 563

game client support,
434-435

GetConnectionSettings
function, 435

RegisterApplication
function, 435

registering games as
lobbyable, 435-437

SetConnectionSettings
function, 434

UnregisterApplication
function, 436

IUnknown, 11
joystick devices, 350
language-independent, 9
pointers, 10, 225-227
programming

DirectAnimation from
Visual C++, 494

querying for pointers, 11
reference counting, 499
releasing, 11, 396
union members, 406
universal, 10
user, 537

Internet, streaming, 451
Internet Explorer 5, 491
inverse kinematics, 314
inverting images, 474
IPX, 409
IsValid method, 118
IUnknown interface, 10

functions, 11
interface determination, 10
pointers, 499
QueryInterface method, 11
reference counting, 10

iX variable, 352
iY variable, 352

J

Java (DirectAnimation), 493
joining DirectPlay sessions,

412-414
joysticks, 348, 350

auto center, enumerating,
365

buttonDown array, 352
creating, 350
dead zones, 351-352
enumerating, 348
force-feedback, 334, 356
Microsoft’s SideWinder

Force Feedback Pro, 335
multiple axes, 334
polling and handling input

data (code), 352
position variables, 352
setting, 351

JScript, 506-508

K

key colors (color keying)
converting, 77-79
selecting, 77

key constants (DirectInput),
342-343

keyboards
absolute information, 342
acquiring, 342
buffers, 342
creating, 341
data format, 341
input, 341

controlling scrolling
backgrounds, 64-65

GetDeviceState
method, 342

handling, 342
key constants, 343
MIDI, 141

releasing, 343
retrieving input, 334
state arrays, 342
unacquiring, 343

kinematics (3D objects),
311-314

algorithms
closed form solutions,

313-314
numerical solutions,

313-314
degrees of freedom,

312-313
inverse, 314

kinetics (3D objects),
311-312

L

languages, scripting, 493
DirectAnimation support,

493
JScript, 506

LANs (local area networks),
7

latency(network), 99,
419-420

guaranteed messaging,
422

input devices, 334
reducing, 421-422

launching DirectMusic
Producer, 154

layers, 82
multiple layers, 83-87

calculating layer posi-
tions, 89

image surfaces, 84-85
loading layers, 85-91
structures for storing

information, 83-84
textures, 254, 262
z-ordering, 81-82

564 interfaces

37 1634x index 11/13/99 11:10 AM Page 564

left-handed axes (3D
objects), 315-316

legacy IDirectDraw inter-
face, 11

levels, cooperative, 40
Lib directory, 9
libraries

adding files to applica-
tions, 27

ATL, 494
danquid.lib static link, 497
DirectAnimation, 493

adding to projects, 497
Lib directory (SDK), 9
setting paths, 28

Library Files category, 9
LightEnable function, 278
lighting, 184

activating lighting
pipeline, 277-278

animating lights in a
scene, 278

color, 266, 271
creating, 265, 269-270,

274
parallel lights, 277
point lights, 275
spotlights, 276
vertex normals, 271,

274
effects, 503
parallel lights, 269
pipeline, 277-278

turning off, 280
point lights, 267
removing lights, 280
spotlights, 268
types, 266

Lightwave 3D modeling
package, 286

linkers, accessing options,
28

listener objects
(DirectSound3D), 386

creating, 386-387,
392-394

orientation, 390
setting position and

velocity, 389
velocity, 388

listings
#import declaration in

DASampleView.h, 497
activating lighting

pipeline, 278
adding motion behaviors,

502
allocating vertices and

calculating extents, 221
animating

lights, 279
sound effects, 396

applications, initial setup,
61

attaching z-buffers, 251
back buffers (retrieving),

44
beginning of the frame

rendering function, 88
blitting to the Screen, 90
calculating

parallax based position
for a layer, 89

viewer location, 235
calling the images loading

function, 63
CCube class

class definition, 218
constructor, 272
destructors, 222
draw function, 270
functions handling

materials, 269
checking

for chat types of mes-
sages, 440

Frame time, 68f

cleaning up, 242
Cleanup function, 36,

65, 484
slide-show applica-

tions, 49
clearing the viewport, 237
clipping to the screen

rectangle, 89
connection callback func-

tions, 410
converting RGB color

values to current pixel
format, 79

creating
3D listener objects,

392
3D objects, 232
3D sound buffers, 395
Application window,

31
Direct3D Object and

Device Interfaces,
231

DXSurface objects,
481

flipping chains, 43, 48
matching surfaces

(bitmaps), 24
parallel lights, 277
point lights, 275
spotlights, 276
transform factories,

471
transforms, 482
z-buffers, 251

CWave class
constructors, 118
Create methods,

119-120
GeDataLen method,

122
GetData method, 120,

122
GetFormat method,

121
Play method, 121

listings 565

37 1634x index 11/13/99 11:10 AM Page 565

CWnd member variable in
DASampleView.h, 497

DAViewerControl initial-
ization, 498

daw routine, 34
defining the

index values for a
block, 219

vertices, 222
determining color key for

current pixel format, 88
DirectAnimation JScript

example, 507-508
DirectPlay connection set-

tings from a lobby, 443
displaying the interface,

91
DPSESSIONDESC2

structure, 441
drawing current images

and loading adjacent
images, 50

enumerating z-buffer
formats, 249

EnumJoystickProc call-
back function, 349-350

error strings and function
prototypes, 226

establishing full-screen
display, 47

EXAMPLEH2.RC
resource file, 28

executing transforms, 483
finding objects that are

onscreen, 89
force feedback

constant effect, 370
EnumEffectProc call-

back function, 366
enumerating, 363
explosion effect, 372
gun fire, 372

function definition and
bitmap loading code, 24

function to draw the
CCube object, 223

game loop’s window pro-
cedure with keyboard
handling, 64

global interface defini-
tions, 225

global variable definition,
29-30

global and constant defini-
tions, 62

handling z-buffer format
callback, 250

header files included in
CUBE.CPP, 219

importing
3D objects, 501
sound, 504

includes and definitions
for a 3D application, 224

initializing
3D objects, 393-394
Application window

and DirectDraw, 227
Direct3D and the 3D

scene, 228
DirectDraw, 32
DirectDraw to be

Compatible with
Direct3D, 229

DirectSound objects,
125

loading
background layer, 85
bitmaps into texture

surfaces, 255
default bitmap images,

34
images with

LoadImage function,
481

layers, 86
load_sounds function,

126-127

user interface, 85
X files for use in 3D

transforms, 478
loop iterates through avail-

able mouse input data,
346-347

Media Player ActiveX
control, 451

Message loop, 57, 68
Message loop Using

PeekMessage, 58
modulation example, 262
moving

and displaying the Taxi
Sprite, 90

Objects According to
Elapsed Time, 69

object storage for array of
cubes, 226

OnClick handlers, 453
polling joysticks and han-

dling input data, 352
precalculating lighting val-

ues for the vertices, 222
procedural surface objects,

476-477
projection matrix and

render states, 261
querying for new inter-

faces, 12
registration information

structure, 436
releasing

all DirectX objects,
396

image surfaces, 85
rendering

3D scenes, 237, 503
getting ready, 233
render frame function,

71
RESOURCE.H resource

header, 28
RestoreDSBuffers func-

tion, 128

566 listings

37 1634x index 11/13/99 11:10 AM Page 566

retrieving back buffers, 48
revised cube constructor

function, 260
running 3D model, 504
sample transition in 3D,

479-480
selecting texture format,

258
setting

a 640 by 480 viewport,
203

the color key, 88
the view transform,

236
setting up

the 3D Viewport, 232
the Projection Matrix,

232
transforms, 482

slide-shows
applications, 46
navigation, 51

storing
layer images, 84
layer information, 83
viewer location and

direction, 225
testing the Performance

counter, 67
texture bitmaps, 254
toggling specific lights,

278
Wave.h header file for the

CWave class, 117-118
window message handler,

35, 238
WinMain function, 30, 66,

240
randomly playing

sound effects, 128-
130

LoadImage function, 63-64,
85, 468-469, 481

LoadImage.cpp, 480
loading

3D sound data, 394
bitmaps, 34
bitmaps to DirectDraw

surfaces, 23-25
composition files

(IDirectMusicLoader
interface), 164-166

Direct3D X files, 300-302
DirectMusic performance

components, 173-175
layers, 85-91
slides for slide-show

applications, 48
textures, 254
X files, 478

load_sounds function, 126,
394

lobbies (DirectPlay),
428-431

applications
launching, 443-445
lobby-aware, 432
making lobbyable,

431-432
chat services, providing,

440-441
clients, 428-429

groups, 437-439
sessions, 437, 441-443
users, 437

games
client, 428-429
Lobby-Aware, 432
servers, 428-431

IDirectPlayLobby3 inter-
face, 432-437

CoCreateInstance
COM function, 433

DirectPlayLobbyCreate
function, 434

EnumLocalApplica-
tions function, 437

game client support,
434-435

GetConnectionSettings
function, 435

RegisterApplication
function, 435

registering games as
lobbyable, 435-437

SetConnectionSettings
function, 434

UnregisterApplication
function, 436

providers, 430, 446
sending/receiving lobby

messages, 444-445
servers, 428-430

lobby-aware applications,
432

Lobby-Aware games, 432
local area networks (LANs),

7
location (3D sound), 385
locking

Lock method, 23, 106
sound buffers, 106-107
surfaces, 23, 467

LockSurface function, 467
Loop method, 504
loops

creating, 346
game loops, 55-57, 346

adding, 240-242
scrolling backgrounds,

66-69
message loops, 35, 57-58

scrolling backgrounds,
67

smooth playback,
59-60

sound, 504
WinMain function, 128

losing sound buffers, 108
low-latency, programming,

383

low-latency, programming 567

37 1634x index 11/13/99 11:10 AM Page 567

low-latency mixing, 99
lpcDSBufferDesc parameter

(CreateSoundBuffer
method), 102

lpD3DLight7 parameter
(SetLight function), 266

LPD3DLIGHT7 structure,
266

lpDD global variable, 24
lpDDS parameter, 198
lpDDSurfaceTargetOverride

parameter (Flip function),
45

lpDS variable, 125
lpDSBSounds array, 124
lpdwAudioBytes1 parame-

ter (Lock method), 106
lpdwStatus parameter

(GetStatus method), 108
lpguidApplication parame-

ter, 410
lplpDirectInput parameter,

336
lplpDirectSoundBuffer

parameter
(CreateSoundBuffer
method), 103

lplpvAudioPtr1 parameter
(Lock method), 106

lply3DDevice parameter,
198

lpSlides[] array, 47
lSirenPan variable, 125
lSirenPanInc variable, 125

M

macros (SafeRelease), 340
magnitude (force feedback),

357
managing filters, 450

mapping
frustum to the screen, 202
texture, 253

mat parameter, 188, 194,
201

Material template (Direct3D
X files), 293-294

material values, 271
mathematical functions,

defining surfaces, 475
Matrix4x4 template

(Direct3D X files), 296-297
matrixes, 187

3D object motion,
315-316

CrossProduct function,
315-318

DotProduct function,
315-318

3D objects, 318
calculating an axis, 188
columns/rows, 188
concatenation, 192-194
creating, 188
D3DMATRIX, 188
invalid, 188
offset axis, 188
projection, 190, 195, 200
rotation

X-axis, 191
Y-axis, 191
Z-axis, 192

scaling, 191
stringing to form motion,

192
translation, 190
view, 190
world, 190

Maya 3D modeling package,
286

mbstowcs function, 469
measurements

degrees, 201
distance (Direct3D), 201
radians, 201

measures (music), 142
Media Player ActiveX

controls, 451
creating buttons, 453
listing, 451
parameters, 452-453

melodies, playing
(DirectMusic Producer),
159

melody tracks, 144
memory

DirectSound buffers, 127
system memory, 18
video, 18, 41-43

Mesh template (Direct3D X
files), 292-293

meshes
3D tranforms, 478
defining, 213-214

triangle fans, 214
triangle lists, 213
triangle strips, 214

Direct3DRMMeshBuilder
3, 478

drawing, 215
formats, 213
indexing, 216-217
models, 182
simple, 501
transforms, 470

MeshFace template
(Direct3D X files), 292-293

MeshNormals template
(Direct3D X files), 294-295

MeshTextureCoords tem-
plate (Direct3D X files),
295-296

message loops, 35, 57-58
scrolling backgrounds, 67
smooth playback, 59-60

messages
DirectPlay, 418
encrypted, 419

568 low-latency mixing

37 1634x index 11/13/99 11:10 AM Page 568

error
DirectSound, 125
fatal error C1083, 497

guaranteed, 419-422
handlers, 496
MIDI format, 143
routing, 40
sending to players

(network games), 416
signatures, 419

MeterLIbrary property, 499
meters (DirectAnimation),

499
methods, 108. See also func-

tions
calculating Doppler

effects, 388
CreateEffect, 359
CreateSurface, 21
CWave class, 118
EnumEffects, 365
IDirect3DDevice7

BeginScene, 237
Clear, 236-237
DrawIndexedPrimitive,

217
EndScene, 237

IDirectInput interface, 337
IDirectInputDevice inter-

face, 338-339
IDirectInputDevice2 inter-

face, 350
IDirectInputEffect inter-

face, 360-361
Initialize, 360
Release, 361
SetParameters, 360,

371
Start, 360
Unload, 360

IDirectSound interface,
102-104

IDirectSound3DBuffer
interface, 380-381

IDirectSoundBuffer inter-
face, 105-106

IDirectSoundDListener
interface, 387

QueryInterface, 11
reassigning results back to

the calling object, 499
SetCooperativeLevel,

20-21
setting

rolloff factor, 389
sound distance values,

386
sound processing mode,

391
MFC AppWizard, opening,

495
Microsoft

Chromeffects, 7
DirectSetup installation

support tool, 535
Internet Explorer 5, 491
SideWinder Force

Feedback Pro joystick,
335

Synthesizer, 137-138
Visual C++, 7

MIDIs, 137
creating linear pieces of

music, 139
importing patterns into

Producer, 141, 144
instruments, 138
internal MIDI synthesis,

138
keyboards, 141
saving, 143

mirroring images, 474
mixing audio, 99, 114
model space (3D objects),

311
modeling packages (3D),

286
3D models, 182, 185
3D pipelines, 182

clipping, 183-184
DirectAnimation, 491
hidden surface removal,

183-184
model space, 189
texturing, 184
transformation, 183, 189,

194-195
combining, 192
rotation, 190
scaling, 190
translation, 190

vectors, 186
modem-to-modem service

providers, 409
modifying

behaviors, 492
development environment,

7
device control panels, 337
parameters, 383
root behaviors, 492
tempos (DirectMusic),

169-171, 175-177
modulating textures, 254
motifs (musical), 167
motion

affecting sound, 378, 385
behaviors, 502
Doppler effects, 388
dynamics (3D objects)

kinematics, 312-314
kinetics, 311-312

mouse, 334, 344
acquiring, 346
behavior, 344
buffering input, 345
creating, 344
extracting data from

buffer, 347
polling for data, 346
retrieving data, 346
tracking actions, 347

mouse 569

37 1634x index 11/13/99 11:10 AM Page 569

move_rate variable, 130
moving 3D sound buffers,

385
MPEGs, filter graph for

rendering, 455
MsgType parameters, 539
MSPID_PrimaryVideo

function, 457
multimedia

extensions, 7
streaming, 451

adding sound renderer,
457

adding video playback,
457

creating filter graphs
filtergraphs, 454-455,

458
initializing, 456
sample stream objects,

458-459
setting up file streams,

458
starting video, 460

support classes, 123
video, 7, 451

multiplayer games, 401
multiple layers, 83-87

calculating layer positions,
89

image surfaces
defining, 84
releasing, 84-85

loading layers, 85-91
structures for storing

information, defining,
83-84

multitrack music synthesis,
144

music, 6, 135. See also
sound

altering during playback,
140

basic structure, 142-143

chordmaps, 140
chords, 140
composition knowledge

(DirectMusic), 179
creating, 139-141

assigning properties to
pattern, 139

bands, 147
IDirectMusicComposer

interface, 148
MIDI songs with alter-

native music editing
packages, 141

saving MIDIs, 143
scores, 154-162
selecting instruments,

147
signposts, 148
templates, 159-162
with templates, 149

duration, 142
dynamic compositions,

140, 147-149
interactive, 137-139
instruments, selecting,

154-156
measures, 142
MIDIs, 137
motifs, 140
multitrack synthesis, 144
octaves, 143
pitch, 142
playing randomly, 140
polyphony, 136
randomness, 148
saving performances, 162
scores, 142
segments, 140
streaming, 137
styles, 148
tempo, 141-142
translating for waveform

playback, 138
transposing, 149
variance between systems,

138

Musical Instrument Digital
Interface files. See MIDIs

musical motif, 167
musical performances,

saving (DirectMusic
Producer), 162

musical scores, creating
(DirectMusic Producer),
154-162

musical templates, creating
(DirectMusic Producer),
159-162

N

name-mangling algorithm,
10

naming projects
(DirectMusic Producer),
154

navigating slide-shows, 51
near clipping plane, 200
network agnostic, 402
networks

choosing connections, 408
communication service

providers, 409
DirectPlayLobby interac-

tion, 536
latency, 419-420

guaranteed messaging,
422

reducing, 422
removing, 421

playing games, 7, 402, 415
multiplayer games, 403
secure sessions, 407
sending messages to

players, 416
strain of game play,

404

570 move_rate variable

37 1634x index 11/13/99 11:10 AM Page 570

Newton’s Law of Restitution
for Instantaneous
Collision With No
Friction, 324

Newton’s Third Law of
Motion, 310-311

non-deterministic data, 421
nonstreaming formats, 451
normal (3D object planes),

318
normal priority level, 104
normals (colors), 294-295.

See also colors
notes (music), 142

duration, 143
pitch, 142
transposing, 149

NULL pointers, 10
NULL values (pUnkOuter

parameter), 198
numerical solutions, kine-

matic algorithms, 313-314
NumInputs parameter, 472
NumOutputs parameter,

472

O

OBJECT IDs (Media Player
ActiveX control), 452

Object/Library Modules
field, 28

<OBJECT> tags, 508
objects. See also 3D objects

COM, 10
deleting, 11
determining interface

support, 10
interface support, 10
unloading, 10

concatenation order, 193

control transformations,
190

DirectInputEffect, 359
DirectMusic, 146, 171
DirectPlay player, 415
DirectSound, 101
DXSurface, 467
IDXSurfaceFactory, 467
layers, 82
material values, 271
modulating textures, 254
multiple ownership, 12
orientation, 204
overlapping, 205-206
procedural surface,

476-477
rasterization, 190
releasing DirectX

Transform, 484
rotating, 190
scaling, 190
simple 3D objects

class definitions, 218
class member func-

tions, 218
constructors, building,

221-222
creating, 218-222, 232
destructors, building,

222
index array, defining,

219
pre-lit vertices, defin-

ing, 220-221
rendering, 223

sorting, 248
surface visibility, 206
template, 148
texture mapping, 248, 253
transforming, 189
uv coordinates, 253
volume, 204

octaves, 143

omnidirectional sound
sources, 384

OnClick handlers, 453
opacity, 469
Open function (IDirectPlay4

interface), 412, 442
orbital freedom (3D object

movement), 313
ordinals, 10
orientations, 187, 204

listener, 390
vectors, 391
viewers, 194

oriented bounding boxes
(OBB), 320-321

origins, 186-189
output (DirectSound

objects), 105
output images, transforms,

472
overdraw, 92
overlapping objects, 205

painter’s algorithm, 206
z-buffers, 206

P

packets, damaged, 420
painter’s algorithm, 205
panning, 109, 125, 392
parallax, 82, 199
parallel lights, 266, 269, 277
<PARAM> tags, 452
parameters

AddGroupToGroup func-
tion, 417

AddPlayerToGroup func-
tion, 417

conic sections, 384

parameters 571

37 1634x index 11/13/99 11:10 AM Page 571

CreateControl function,
498

CreateGroup function, 417
CreateGroupInGroup

function, 417
CreatePlayer function, 416
CreateSoundBuffer

method, 102-103
D3DMath_MatrixMultiply

function, 192
D3DMath_VectorMatrix-

Multiply function, 188
D3DUtil_SetProjection-

Matrix function, 201
D3DUtil_SetViewMatrix

function, 194
D3DVIEWPORT7 struc-

ture, 202
DirectSoundCreate func-

tion, 101
EnumDevices method, 348
EnumSessions function,

415
Flip function, 45
GetStatus method, 108
IDirectPlay4 interface, 413
IDirectSound3DBuffer,

Get/SetMode methods,
391

IDXSurfaceFactory inter-
face

CreatSurface function,
468

LoadImage function,
469

IDXTransformFactory::
CreateTransform func-
tion, 472

InitializeConnection func-
tion, 411

Lock method, 106

Media Player ActiveX
control, 452-453

modifying, 383
Open function, 412
passed to callback

functions, 411
Play method, 108
PlaySound function, 115
SecureOpen function, 414
Send function, 418
SetColorKey function, 79
SetCooperativeLevel

method, 104
SetDisplayMode function,

41
SetLight function, 266
timing parameters,

scrolling background
game loop, 66-67

viewing, 199
window handles, 341

passing handles to main
application window, 341

passwords for game play,
403

paths
importing image files, 501
relative pathnames, 501
SDK header files, 8

patterns, 140. See also
music

importing MIDI files, 141
music, 149
procedural surfaces, 475

PChannels (Performance
Channels), 155

PeekMessage command, 57
PeekMessage function, 67
peer-to-peer mode (game

communication models),
403-404

performance components
(DirectMusic), 173-175

performance counters,
59-60

performances, saving
(DirectMusic Producer),
162

period (force feedback), 357
periodic effects (force feed-

back), 359
persistence of vision, 42. See

also graphics
perspective camera

(DirectAnimation), 503
Perspective Transforms, 183
phase (force feedback), 357
phi element (spotlights), 268
physics

Newton’s Law of
Restitution for
Instantaneous Collision
With No Friction, 324

Newton’s Third Law of
Motion, 310-311

pInfo parameters, 539
pins, filters, 455
pitch, 142, 377
pixels

alpha values, 470
checked against z-buffers,

206
DirectAnimation, 499
fAspect parameter, 201
formats

16-bit pixel formats, 78
color, 469
converting key colors,

78-79
surface, 467

meters, 500
procedural surfaces, 475
rasterization, 184
read-only values, 475
values (gradients), 476

pJoystick global variable,
350

572 parameters

37 1634x index 11/13/99 11:10 AM Page 572

planes
3D objects, 318
clipping, 200

play cursors, 106
Play method, 118

CWave class, 121
IDirectSoundBuffer inter-

face, 108
parameters, 108

player objects (DirectPlay),
415

players
groups, 416-418
sending messages to

(network games), 416
playing

games
latency, 419-422
multiplayer (networks),

7
music

altering during play-
back, 140

melodies (DirectMusic
Producer), 159

randomly, 140
segments, 169

sound buffers, 108
sounds

CWave class, 124
DirectSound, 124
DirectSound buffer

memory, 127
render_frame function,

130
PlaySound function, 115

flags, 115-116
limitations, 116
parameters, 115
playing a looped wave file,

116
PMARGB32 pixel format,

469

point lights, 266-267
creating, 275
elements, 268

pointers
back buffers to, 44, 47
checking validity, 36
initializing values to

NULL, 30
to interfaces, 10
IUnknown, 499
lplpDirectInput, 336
NULL, 10
out of scope, 499
querying for, 11
reference counting, 12

points
3D objects, 316
origins, 186

polar coordinates, 368
Poll method, 350-352
polling

joysticks for input, 350
joysticks for input data,

352
for mouse data, 346

polygons, sorting, 205, 247
polyphony, 136
position (listener objects),

389
position element (point

lights), 268
positioning layers, 89
power of two dimensions,

257
ppDS parameter

(DirectSoundCreate func-
tion), 101

pre-lit vertices, defining,
220-221

primary sound buffers,
104-105, 387

primary surfaces, creating,
33

Primary Video Stream
interface, 458

primitives, 213-214
indexed primitives,

216-217
size, 245
triangle fans, 214
triangle lists, 213
triangle strips, 214

priority levels (sound
devices), 103

procedural surfaces, 475
creating, 476
disadvantages, 475
functions, 475
gradients, 476
speed, 475

processing mode (sound
buffers), 391

Producer (DirectMusic),
154-162

basics, 142-143
DirectMusic, 140
importing MIDIs, 141,

144
instruments, selecting,

154-156
launching, 154
melodies, 159
musical scores, 154-162
performances, saving, 162
rhythm, 156-158
templates, 159-162

program initialization,
227-228

programming
3D sound, 382, 385
automation interface, 492
configuring

system to begin, 7
Visual C++ for

DirectX, 8-9

programming 573

37 1634x index 11/13/99 11:10 AM Page 573

DirectAnimation, 489
from C++, 493
with scripting

(HTML), 494, 506
from Visual C++, 493

DirectSound, 101
games, multiplayer, 407
installation, 535-536
JScript, 506
language-independent

interfaces, 9
low-latency, 383
obtaining GUIDs, 408
static versus streaming

sound buffers, 110
projection matrix, 190, 200,

261
Projection Transforms, 195
projects

DADSample, 506
DASample, 495
naming (DirectMusic

Producer), 154
properties

assigning to musical
patterns, 139

input devices, 339
joysticks, 351
transforms, 473

ps_zSound parameter
(PlaySound function), 115

pUnkOuter parameter, 198
CreateSoundBuffer

method, 103
DirectInputCreate func-

tion, 336
DirectSoundCreate func-

tion, 101
put_Duration function

(IDXEffect interface), 474
put_Progress function

(IDXEffect interface), 474

Q

quaternions (3D objects),
318

querying
DirectDraw interface, 198
IdirectDrawMediaStream

interface, 459
for input devices, 337
for listener objects, 386
for pointers, 11
sound hardware for

capabilities, 103
QueryInterface function

(IUnknown interface),
11-12, 198, 499

QueryInterface method, 350
QueryPerformanceCount

function, 60
QueryPerformanceFrequen-

cy function, 59-60

R

radians, 190, 201, 502
ramp forces (force feed-

back), 358
randomness

music, 148
procedural surfaces, 475

range element, 268
ranges (joysticks), 351
rasterization, 183-184
Rate method, 504
rclsid parameter, 198
reactions (3D objects), 319

animating, 329-330
collision detection,

319-322
overview, 319

Reason parameters
(DirectXSetupCallback-
Function function), 538

Receive function, 416,
440-441

recording music. See music,
creating

redefinition exclusions, 497
redrawing graphics, 42
reference counting, 10-12
RegisterApplication func-

tion, 435
registering

applications, 446
games as lobbyable,

435-437
relative coordinates, 186
relative information,

buffering mouse input, 345
relative motion, 82
relative pathnames, 501
Release function, 126, 445

IDirectInput interface, 337
IDirectInputEffect inter-

face, 361
IDirectInputDevice inter-

face, 339
IDirectSound interface,

103
IUnknown interface, 11

releasing
devices (keyboards), 343
DirectSound objects, 103
DirectX interfaces, 36
DirectX Transform

objects, 484
image surfaces (layers),

84-85
interfaces, 396

removing hidden surfaces,
203

render frame function,
71-72, 88, 233

574 programming

37 1634x index 11/13/99 11:10 AM Page 574

render states, 261
Render method (IDAView

interface), 506
rendering. See also draw-

ing; creating
complex scenes, 203
Direct3D X files, 300-305
filters, 454
graphics, 183
overlapping objects,

205-206
scenes, 236-238
scrolling backgrounds,

69-72
textured mapped objects,

253
z-buffer, 248

render_frame function, 130
render_slide function, 51
resolution (screen), 41
resource files (Simple Win32

applications), 28
Resource Interchange File

Format (RIFF) files, 115,
123

RestoreDSBuffers method,
128

restoring sound buffers,
108, 128-130

rhythm tracks, 144, 156-158
RIFF (Resource

Interchange Resource
Format) files, 115, 123

right-handed axes (3D
objects), 315-316

right-handed convention
(3D transforms), 477

Roland instrument set, 138
rolloff, 377-379, 388-389
root behaviors, modifying,

492
rotate transforms, 190, 473

rotating
3D objects, 502
images, 474

rotation matrixes
X-axis, 191
Y-axis, 191
Z-axis, 192

routines (cleanup), 242-243
rows (matrixes), 188
RunApplication function,

443
RunControlPanel method,

337
running applications, 243

S

SafeRelease function, 36,
126

SafeRelease macro, 340
sample applications

3D display generation,
233-236

cleanup routines, adding,
242

Direct3D, initializing,
230-231

DirectDraw, initializing,
228-230

game loops, adding,
240-242

global interface pointers,
225-227

header includes and defin-
itions, 224

initialization, 227-228
Direct3D, 230-231
DirectDraw, 228-230

scene rendering, 236-238
simple 3D objects

class definitions, 218
class member func-

tions, 218

constructors, building,
221-222

creating, 218-222, 232
destructors, building,

222
index array, defining,

219
pre-lit vertices,

defining, 220-221
rendering, 223

test running, 243
user input, handling,

238-240
viewports, setting up,

231-232
sample stream objects

creating, 458
drawing video to, 461
IDirectDrawSurface4, 459
saving, 459

saturated primary colors,
77

saving
MIDI files, 143
performances

(DirectMusic Producer),
162

sample stream objects,
459

Scale3Uniform method
(IDAStatics interface), 501

scaling
matrixes, 191
transformations, 190

scenes, 56
3D representations, 81-82

layers, 82
parallax, 82
relative motion, 82
z-ordering, 81-82

adding sound, 503
animating, 504
animating lights, 278
camera and lighting

effects, 503

scenes 575

37 1634x index 11/13/99 11:10 AM Page 575

creating, 493
defining, 189
DirectAnimation, 493
drawing with the GDI, 496
hidden surface removal,

203
JScript, 506
projecting into a 2D plane,

503
rendering rendering,

236-238
states, setting, 261
textures, 261

sorting objects, 248
textures, 247
translating objects into,

183
updating (DirectDraw),

506
z -buffers, 247

scores, 142
creating (DirectMusic

Producer), 154-162
selecting instruments, 147
tempo, 142

screens
clipping, 184
drawing graphics, 42
setting resolution, 41

scripts
programming

DirectAnimation, 494
relative pathnames, 501
scripting languages, 493

scrolling backgrounds,
61-72

constant definitions, 62
controlling motion through

keyboard input, 64-65
game loops

creating, 66-69
frame time, checking,

68-69

message loop, entering,
67

timing parameters,
66-67

WinMain function, 66
global variables, 62
initialization

code, 61-62
load images function,

62-64
setting up, 62-64

releasing DirectDraw
interfaces, 65-66

rendering, 69-70, 72
tiling images, 61

SDK
adding directories from, 8
Include directory, 8
Lib directory, 9
setting path for header

files, 8
SDK Direct3D Immediate

Mode Samples, 189
search directors, setting for

Visual C++, 8
secondary sound buffers,

104-105
secure sessions, 407, 413-414
SecureOpen function,

413-414
security

network games, 403
secure sessions, 407,

413-414
segments (music), 140

controlling, 148
IDirectMusicSegment

objects, 147
playing (DirectMusic),

169
tempo changes, 169-171

selecting
audio devices, 102
instruments (DirectMusic

Producer), 147, 154-156

network connections, 408
texture formats, 258
z-buffers, 249-250

Self-Lobbied games, 432
Send function (DirectPlay),

416-418
SendChatMessage function,

440
SendEx function

(DirectPlay), 422-423
sending messages

DirectPlay, 418
guaranteed, 421

serial links, 409
service providers, 408-411
sessions, 415, 441-443

creating player objects,
415

DirectPlay, 407-408
joining, 412-414
lobbies, 437

finding those in progress,
415

hosts, 407
players, groups, 416
secure, 414

SetColorKey function,
79-80, 88, 467

SetConnectionSettings func-
tion, 434

SetCooperativeLevel
method, 20-21, 40, 341

DirectSound objects, 126
IDirectInputDevice inter-

face, 338
IDirectSound interface,

103
mouse devices, 344
parameters, 104

SetDataFormat method
(IDirectInputDevice inter-
face), 338

576 scenes

37 1634x index 11/13/99 11:10 AM Page 576

SetDisplayMode function
(IDirectDraw4 interface),
41

SetEventNotification
method
(IDirectInputDevice inter-
face), 339, 345

SetFrequency method, 109
SetLight function, 266
SetMaterial function, 270
SetPan method, 109
SetParameters method

(IDirectInputEffect inter-
face), 360, 371

SetProperty method
IDirectInputDevice inter-

face, 339
setting buffer size, 345
setting joystick ranges,

351
SetRenderState function,

277
SetTextureStageState func-

tion, 262
setting

data formats (joysticks),
351

dead zones (joysticks),
351

Doppler effects, 396
joystick ranges, 351
orientation vectors, 391
paths to library, 28
scene render states, 261
screen resolution, 41
sound

buffer frequency, 109
buffer volume levels,

108
position and velocity,

385
SetVolume method, 108

shapes
faces, 204
polygons, 204

sharing devices between
applications, 341

side scrolling, 91
SideWinder Force Feedback

Pro joystick, 356
signatures (messages), 419
signposts, 148
simple 3D objects

class definitions, 218
class member functions,

218
constructors, building,

221-222
creating, 218-222, 232
destructors, building, 222
index array, defining, 219
pre-lit vertices, defining,

220-221
rendering, 223

Simple Win32 applications,
creating, 27-29

adding library files, 27
coding, 28
global variables, 29
resource files, 28
WinMain function, 30

sin function, 234-235
sinks (sound), 380
sizes (buffers), 345
slide-show applications, 45

cleaning up, 49
creating, 46-47

cleanup function, 49
drawing slides, 49
full-screen display, 48
loading slides, 48
slide navigation, 51

IMAGE_COUNT con-
stant, 47

WinMain function, 51

smart pointer classes, 499
cleanup, 505
setting/retrieving proper-

ties from interfaces, 500
smooth playback, 58-60
software

3D pipelines, 182-183
custom synthesizers, 137
entertainment, 40
music editing, 141-143

sorting polygons, 247
sound, 6, 376

3D, 100, 376
creating buffers, 381
disabling, 391
loading data, 394

adding to multimedia
streams, 457

affected by motion, 385
animating effects, 395
attenuation, 384
audio cards, 136-138
batch mode processing,

383
buffers, 99

3D, 380
circular nature, 107
creating, 102
frequency, 109
GetStatus method, 130
initializing, 114
locking/unlocking,

106-107
losing, 108
play cursors, 106
playing, 108
primary, 104-105
secondary, 104-105
static/streaming, 109
status, 108
stopping, 108
volume, 108
write cursors, 106

conic sections, 384

sound 577

37 1634x index 11/13/99 11:10 AM Page 577

creating
instruments from

recorded sounds, 147
waves, 115

data streams, 100
deferred settings, 384
describing sound data, 137
devices

multiple, 101
priority levels, 103

directional, 383-384
DirectSound, 97
DirectSound buffer

memory, 127
DirectSoundBuffer

objects, 114
distance units, 385
Doppler effects, 377, 388,

396
duration, 142
games, 114
hardware, 376
head-related transfer func-

tion, 379
intensity delay, 379
intensity difference, 379
listener object, 389
location, 385
low-latency, 99, 383
mixers, 105
muffled, 379
music, 6, 135

altering during play-
back, 140

basic structure,
142-143

creating, 139-141, 144
interactive, 137-139
measures, 142
MIDIs, 137
motifs, 140
multitrack synthesis,

144

saving MIDIs, 143
segments, 140
tempo, 142

octaves, 143
omnidirectional, 384
orientations, 390
panning, 109, 125, 392
perception, 378
pitch, 377
playing

CWave class, 124
DirectSound, 124
randomly, 128-130
render_frame function,

130
polyphony, 136
processing mode, 391
random effects, 128-130
rolloff, 377-379, 388
sinks, 380
sources, 380, 384
static, 114
streaming, 114
variance between systems,

138
vectors, 385
velocity, 385, 389
volume, 377
waveform playback, 138
waves, 114-115, 377

sound buffers
creating, 384, 387, 395
GetStatus method, 130
processing mode, 391

Sound Recorder applica-
tions, 115

source code (sample Direct
Transform application),
480

source color keying, 76
space (3D)

model, 311
triangles, 204

user, 311
viewing, 199
world, 189, 311

spatial location, relating
visual objects and sounds,
379

spatial sound. See sound
special effects

animations, 470
DirectX Transform, 470
transforms, 473

spectators, 416
specular color, 266
specular components, 221
speed

DirectSound, 138
procedural surfaces, 475

spherical coordinates, 368
spotlights, 266-268

creating, 276
falloff element, 268
making brighter, 276
phi element, 268
properties, 268
theta elements, 268

sprites, 90
stages, textures, 262
staging groups, 418
Stand-Alone games, 432
STANDBY parameters, 452
Start method

(IDirectInputEffect inter-
face), 360

StartSession function, 418
state arrays (keyboards),

342
state blocks, 261
states (game), 404
static sound buffers, 109,

382
static sounds, 114
status, sound buffers, 108

578 sound

37 1634x index 11/13/99 11:10 AM Page 578

steering wheels, 334
force feedback, 356

stencil buffers, 249
Stop method

(IDirectSoundBuffer inter-
face), 108

stopping sound buffers, 108
storing

GUIDs, 408
information in buffers, 345
MIDIs, 143
textures, 254
vertexes, 292-293
wave files, 114

streaming, 114
audio, music, 100,

104-105, 137
cleanup function, 461
DirectShow, 451
filter graphs, 455
formats, 451
graph filters, 454
from the Internet, 451
multimedia

adding sound renderer,
457

adding video playback,
457

creating filter graphs,
458

setting up file streams,
458

sample stream objects,
458-459

drawing video to, 461
IDirectDrawSurface4,

459
sound buffers, 109
starting video, 460
video, 7

strings, 406

structures
DIDEVICEOBJECT-

DATA, 346
D3DLVERTEX, 220-221
DIJOYSTATE, 352
DPSESSIONDESC2,

441-442
styles (music), 148
SUCCESS macros (COM),

456
surfaces

animations, 470
BasicImage transform,

474
bounding areas, 467
color key values, 467
complex, 44
creating, 468

loading images, 468
in video memory, 43

defining
with mathematical

functions, 475
parameters, 25

DirectDraw, 21-22
CreateSurface method,

21
z-buffers, 206

flipping, 44-45
gradient, 476
hidden, 203
locking, 23, 467
primary, 33
procedural, 475

creating, 476
disadvantages, 475

read-only, 475
releasing context, 26
retrieving pixel format,

467
screens, controlling, 40
slide-shows, 45

sustain (force feedback), 358
switch statements, deter-

mining data type, 347

SwitchTo function, 492
syntax

D3DLIGHT7 structure,
267

D3DMath_MatrixMultiply
function, 192

D3DMath_VectorMatrix-
Multiply function, 188

D3DMATRIX structure,
187

D3DUtil_SetViewMatrix
function, 194

D3DVECTOT structure,
186

Flip function, 45
IDXSurfaceFactory

CreateSurface function,
467

LoadImage function,
469

IDXTransformFactory,
CreateTransform func-
tion, 471

SetDisplayMode function,
41

SetLight function, 266
Synthesizer (Microsoft),

137-138
system memory, 18
system messages

(DirectPlay), 418
szMessage parameters, 539
szName parameters, 539

T

tags (HTML), 508
<OBJECT>, 508
<PARAM>, 452

TCP/IP, 409
tearing, 42
template objects, 148

template objects 579

37 1634x index 11/13/99 11:10 AM Page 579

templates
creating (DirectMusic

Producer), 159-162
Direct3D X files

AnimationKey,
297-299

ColorRGB, 293-294
ColorRGBA, 293-294
Coords2d, 295-296
FloatKeys, 297-299
FrameTransform-

Matrix, 296-297
Material, 293-294
Matrix4x4, 296-297
Mesh, 292-293
MeshFace, 292-293
MeshNormals, 294-295
MeshTextureCoords,

295-296
TextureFileName,

295-296
TimedFloatKeys,

297-299
Vector, 292-293

DirectX 7 SDK, 306
musical, 149

tempos, 141-142
games, varying, 175-177
real-time changes,

169-171
testing applications, 243,

328-331
texture management

(DirectX), 258
texture mapping, 182, 248,

253, 257
bump mapping, 254
Direct3D X files, 295-296
hardware limitations, 254
uv values, 260

TextureFileName template
(Direct3D X files), 295-296

textures, 253
creating, 184, 255
dimensions, 257
exceeding video memory

capacity, 257
layering, 254, 262
loading, 254
rendering, 261
selecting formats, 258
stage states, 262
storing, 254
tiling, 259
uv values, 260

theta element (spotlights),
268

Tick method (IDAView
interface), 506

Tile function, 501
tiling

images, 61, 500
textures, 259

TimedFloatKeys template
(Direct3D X files), 297-299

timeGetTime function, 59
timers (smooth playback),

59-60
QueryPerformanceCount

function, 60
QueryPerformance-

Frequency function, 60
selecting, 59-60

timing loop (WinMain func-
tion), 130

timing parameters, 66-67
top vectors, 390
tracking mouse actions, 347
tracks (music), 144, 147
transform filters, 454
Transform method

IDABehavior interface,
492

IDAGeometry interface,
501

transformation matrixes,
190

transformations. See trans-
forms

TransformImages.cpp, 480
transforms, 187

2D, 472-474
3D, 183, 477

IDXEffect interface,
478

loading X files, 478
meshes, 478
right-handed conven-

tion, 477
animating, 482
behaviors, 502
combining, 192
concatenation order,

192-194
creating, 471, 482
creating transform facto-

ries, 470-471
delaying setup, 472
displaying, 483
executing, 483
models, 183
object control, 190
order of, 502
Perspective transforms,

183
Projection transforms, 195
properties, 473
sample DirectX Transform

application, 480-481
transition-type, 473
View transforms, 183, 194
Wipe transforms, 465
World transforms, 183,

189
transition-type transforms,

473
translation matrixes, 191
translation transformations,

190

580 templates

37 1634x index 11/13/99 11:10 AM Page 580

translational freedom, 3D
object movement, 312

transposing music, 149
triangle fans (mesh for-

mats), 214
triangle lists (mesh for-

mats), 213
triangle strips (mesh for-

mats), 214
triangles

3D space, 204
vertices, 212
winding order, 204

triggers, 369
triple buffering, 43
troubleshooting

cleaning up after
DirectInput, 341

DirectAnimation feature
problems, 490

displaying models, 204
message routing, 40
network latency, 421

TYPE parameters, 452

U

Unacquire method
(IDirectInputDevice inter-
face), 339

unacquiring devices, 343
unbuffered input, 338
Unicode strings, 406, 469
union members, 406
Unload method

(IDirectInputEffect inter-
face), 360

unloading COM objects, 10
Unlock method

(IDirectSoundBuffer inter-
face), 107

unlocking sound buffers,
106-107

UnregisterApplication func-
tion, 436

updating scenes
(DirectDraw), 506

UpgradeFlags parameters,
540

user input
handling, 238-240
Win32 API, 334

user interfaces, creating,
537

user messages (DirectPlay),
418

user space (3D objects), 311
user-friendly applications,

40
users (DirectPlay lobbies),

437
uuidgen.exe, 408
uuidof function, 499
uv coordinates, 253
uv values, 259

V

values
calculating an axis, 188
conversion (distance), 389
DirectXSetup API method,

538
distance units, 385
Doppler, 388
dwFlags parameter, 413
GUID, 12
H, 190
positional, 389
rolloff ranges, 389
user-defined, 410
uv, 259
velocity, 389

variables
const static, 408
floating point progress

(IDXEffect interface),
473

global, 24
vAt parameter, 195
VBI (vertical blanking

interval), 42
VBScript, 493, 506
vDest parameter, 188
Vector template (Direct3D

X files), 292-293
vectors, 186

3D objects, 316
corresponding to viewer’s

location, 194
D3DVECTOR structure,

316-317
equations, 317

dot product, 317-318
vector product,

317-318
orientation (sound), 390
sound, 385
transforming, 188

velocity, 385. See also
Doppler effects

3D sound, 385
listener objects, 389
sound processing mode,

391
versioning (DLLs), 10
vertex buffers, 278
vertex normals, 271
vertexes

colors, 293-294
D3DLVERTEX format,

212
D3DTLVERTEX format,

212
D3DVERTEX format, 212
defining triangles, 204
pre-lit, 220-221
storage, 292-293

vertexes 581

37 1634x index 11/13/99 11:10 AM Page 581

vertical blanking interval
(VBI), 42

vertical refresh, 42
verts member, 218
vFrom parameter, 194
video, 7, 460

drawing to sample stream
object, 461

drivers, setting screen
resolution, 41

formats, 451
memory, 18

video system, 18
view matrixes, 190
View Transforms, 183, 194
viewers, 194
viewing area, aspect ratio,

201
viewing frustum, 199
viewing space, 199. See also

parallax
viewports

defining, 202
depth affect on z-buffers,

252
setting up, 203, 231-232

vir, 394
virtual keyboards, 141
VISTA.BMP file, 36
Visual Basic, 493
Visual C++, 7

compiler, 497
configuring

for DirectX program-
ming, 8-9

search directories, 8
creating projects, 495
DirectAnimation, 493
opening MFC AppWizard,

495
programming

DirectAnimation, 493
targets, 407

Visual Studio
Debug window, 505
setting directory search

order, 9
Tools menu, 8

volume, 377
perspective (objects), 204
rolloff, 377
sound buffers, 108

vSrc parameter, 188
vtable array (COM), 10
vWorldUp parameter, 195

W

w-buffers, 249, 252
WaitForMultipleObjects

function, 416
WaitForSingleObject func-

tion, 416
.wav files, 115

adding to Microsoft
Synthesizer, 138

downloadable sounds
(DirectMusic), 177-178

wave sounds, 100, 114-115,
377

creating, 115
CWave class, 117-123
Free method, 118
multimedia support

classes, 123
PlaySound function, 116
resource scripts, 115
RIFF files, 123
sound buffers, 127
storing, 114

wave-tables, 139
waveform playback (music),

138
waveform samples, 138

Web pages
animation, 488
DirectAnimations, 506
embedding ActiveX

objects, 508
Web sites, multimedia, 452
width (viewing area), 199
Win16MuteX flag, 23
Win32

WaitForMultipleObject
function, 416

WaitForSingleObjects
function, 416

Win32 API, 334
disadvantages, 334
PlaySound function, 115

winding orders, 204
WindowProc function, 35
windows

frames, 40
handles, 341

Windows
message handlers, 496
multimedia support, 116
Sound Recorder, 115
wave format, 100

Windows Control Panel,
337

Windows NT
authentication, 407
secure sessions, 414

WinMain function, 66, 128,
240-242

calling Init function, 31
creating, 30
sample DirectX Transform

application, 480
slide-show applications,

51
timing loop, 130

Wipe Transforms, 465, 474
wireframe models, 182
WM_COMMAND message,

35

582 vertical blanking interval (VBI)

37 1634x index 11/13/99 11:10 AM Page 582

WM_CREATE message,
496

WM_DESTROY message,
35

WM_PAINT message, 35
world matrixes, 190
world space, 189, 311
World Transforms, 183, 189
wrapping

creating wrapper classes,
494, 497

sound buffers, 107
write cursors, 106
write-primary priority level,

104
writing

images to the screen, 34
sound data to sound

buffers, 106

X - Y - Z

X files, 478, 501
X-axis rotation matrix, 191

y-axis
3D coordinates, 185
rotation matrix, 191

Z values, 203
z-axis, 185, 200

right-handed convention,
477

rotation matrix, 192
z-buffers, 206

attaching, 251-252
bit depths, 249
changing enable state, 253

creating, 251-252
enabling, 253
formats, 249
hardware support, 249
limitations, 248
scale factors, 252
selecting, 249-250
textures, 247
turning off for rendering,

248
viewport depth, 252

z-ordering, 81-82
zoom, 200, 218

zoom 583

37 1634x index 11/13/99 11:10 AM Page 583

	Teach Yourself DirectX 7 in 24 Hours
	Copyright •2000 by Sams Publishing
	Contents at a Glance
	Contents

	Introduction
	PART I Introduction to DirectX
	HOUR 1 About DirectX—The Pieces That Make It Happen

	PART II Getting Started with DirectDraw
	HOUR 2 Our First Step— DirectDraw in a Windows Application
	HOUR 3 Moving On—Grabbing Control of the System
	HOUR 4 Creating the Game Loop
	HOUR 5 Make It Move— DirectDraw Animation Techniques

	PART III Adding Music and Sound
	HOUR 6 DirectSound—Adding Ambience and Sound Effects to Your Game
	HOUR 7 Applying DirectSound

	PART IV Welcome to 3D
	HOUR 8 DirectMusic—Interactive Music
	HOUR 9 Applying DirectMusic
	HOUR 10 Introduction to 3D Concepts
	HOUR 11 Rendering the 3D Scene

	PART V Input Devices
	HOUR 12 Creating Our First Direct3D Application
	HOUR 13 Adding Textures and Z-Buffers to the Scene
	HOUR 14 Adding Realism Through Lighting

	PART VI Direct3D Immediate Mode
	HOUR 15 Importing 3D Objects and Animations Into the Scene
	HOUR 16 Modeling a Complex World—Applying Physics and Object Hierarchies
	HOUR 17 Introducing DirectInput—Getting User Input
	HOUR 18 Getting Through to the User—Force Feedback
	HOUR 19 3D Sound—From Panning to Doppler Effects

	PART VII DirectPlay
	HOUR 20 Putting Your Game on the Net—Writing Multiplayer Titles
	HOUR 21 Game Central—Creating Lobbies

	PART VIII The DirectMedia SDK
	HOUR 22 Adding Video with DirectShow
	HOUR 23 Bring Surfaces to Life with DirectX Transform
	HOUR 24 Integrating Media Into Web Pages and Applications with DirectAnimation

	PART IX Appendixes
	APPENDIX A Answers
	APPENDIX B Prepare Your Application for Distribution with DirectSetup

	INDEX

